THE FAILURE OF SPECTRAL ANALYSIS IN L^p FOR 0

BY KAREL de LEEUW¹

Communicated October 13, 1975

1. Introduction. For $0 , <math>L^p$ is the space of measurable f on the circle group **T** with

$$||f||_p = \left[(2\pi)^{-1} \int_{-\pi}^{+\pi} |f(x)|^p dx \right]^{1/p} < \infty$$

If $0 , <math>L^p$ is not a Banach space, but is a metric space with distance defined by $d(f, g) = ||f - g||_p^p$.

A linear subspace of L^p will be called a T-subspace if and only if it is closed and translation invariant. If F is a function or a collection of functions in L^p , then $L^p(F)$ will denote the smallest T-subspace of L^p containing F, the T-subspace of L^p generated by F. If $F = \{e^{in} : n \in \Delta\}$, is a collection of exponential functions, $L^p(F)$ will also be denoted by $L^p(\Delta)$.

For $p \ge 1$, the classification of the T-subspaces of L^p is straightforward (see [3, Chapter 11]). The map

$$(1.1) \qquad \qquad \Delta \xrightarrow{} L^p(\Delta)$$

gives a 1-1 correspondence between the collection of all subsets of integers and all T-subspaces of L^p .

The purpose of this note is to point out that the case 0 is much more intricate, to be specific, the map (1.1) is neither 1-1 nor onto. We shall outline proofs of results which imply the following.

THEOREM 1. Let 0 . Then

- (i) L^p has nontrivial T-subspaces containing no exponentials;
- (ii) There are distinct sets Δ and Γ of integers with $L^p(\Delta) = L^p(\Gamma)$.

Details will be published elsewhere. In what follows, "Proof" should of course be interpreted to mean "Outline of Proof".

2. Spectral analysis in H^p for $0 ; Cauchy integrals. Here we restrict to the T-subspace <math>L^p(\{e^{in}: n \ge 0\})$, which is denoted by H^p . (For the basic properties of H^p which we use in what follows, see [2, Chapter 7], [4, Chapter 3] or [1].) H^p can also be characterized as follows: Let D be the unit disk $\{z: |z| < 1\}$. We define $H^p(D)$ to consist of all functions F which are analytic in D with $|||F|||_p = \sup\{||F_r||_p: 0 < r < 1\} < \infty$, where each F_r is de-

AMS (MOS) subject classifications (1970). Primary 30A78; Secondary 43A15.

¹This research was supported by the National Science Foundation Grant MPS71-02841A04.