THE DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION

BY ERIC BEDFORD¹ AND B. A. TAYLOR²

Communicated by P. R. Halmos, September 25, 1975

On C^n , write $d = \partial + \overline{\partial}$, $d^c = i(\overline{\partial} - \partial)$ so that $dd^c u = 2i\partial\overline{\partial}u$, and let

$$\beta_n = \left(\frac{i}{2}\right)^n \prod_{j=1}^n dz_j \wedge d\overline{z}_j$$

be the usual volume form. We study here the nonlinear Dirichlet problem,

$$(dd^{c}u)^{n} = dd^{c}u \wedge \cdots \wedge dd^{c}u = f\beta_{n} \quad \text{on } \Omega,$$

(1) u plurisubharmonic on Ω ,

 $u = \phi$ on $\partial \Omega$

where Ω is a bounded open set in \mathbb{C}^n , $f \ge 0$, and ϕ is a continuous function on $\partial\Omega$. For arbitrary plurisubharmonic functions u, it is known that $dd^c u$ is a positive current of type (1, 1) [4, p. 70]; but, it is not clear that the higher exterior powers of $dd^c u$ are well defined. In fact, examples indicate that it is probably not possible to define $(dd^c u)^n$ as a distribution for all plurisubharmonic functions u [7]. However, for bounded, C^2 plurisubharmonic functions, Chern, Levine, and Nirenberg [3] have given an estimate which makes it clear how to define $(dd^c u)^n$ when u is a continuous plurisubharmonic function. If $||u||_{\Omega} = \sup \{ |u(z)| : z \in \Omega \}$, then they prove that for each compact subset K of Ω , there is a constant C = C(K) such that

$$\int_K (dd^c u)^n \leq C \{ \|u\|_{\Omega} \}^n$$

for all C^2 plurisubharmonic functions u on Ω . With this result (and its proof), it is easy to show that the operator $(dd^c u)^n$, thought of as a mapping from the C^2 plurisubharmonic functions on Ω to the space of nonnegative Borel measures on Ω , has a continuous extension to the space of all continuous plurisubharmonic functions on Ω . It is with this definition of $(dd^c u)^n$ as a nonnegative Borel measure on Ω that we study the Dirichlet problem (1).

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 32F05, 35D05; Secondary 32E99.

 $^{^{1}}$ Research supported in part by a Sloan Foundation Grant to Courant Institute of Mathematical Sciences, New York University, and by the Army Research Office grant number DAHC04-75-G-0149.

 $^{^{2}}$ Research supported in part by the National Science Foundation Grant Number GP 37628.