THE DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION

BY ERIC BEDFORD ${ }^{1}$ AND B. A. TAYLOR ${ }^{2}$

Communicated by P. R. Halmos, September 25, 1975
On \mathbf{C}^{n}, write $d=\partial+\bar{\partial}, d^{c}=i(\bar{\partial}-\partial)$ so that $d d^{c} u=2 i \partial \bar{\partial} u$, and let

$$
\beta_{n}=\left(\frac{i}{2}\right)^{n} \prod_{j=1}^{n} d z_{j} \wedge d \bar{z}_{j}
$$

be the usual volume form. We study here the nonlinear Dirichlet problem,

$$
\left(d d^{c} u\right)^{n}=d d^{c} u \wedge \cdots \wedge d d^{c} u=f \beta_{n} \quad \text { on } \Omega
$$

$$
\begin{gather*}
u \text { plurisubharmonic on } \Omega, \tag{1}\\
u=\phi \text { on } \partial \Omega
\end{gather*}
$$

where Ω is a bounded open set in $\mathbf{C}^{n}, f \geqslant 0$, and ϕ is a continuous function on $\partial \Omega$. For arbitrary plurisubharmonic functions u, it is known that $d d^{c} u$ is a positive current of type $(1,1)$ [4, p. 70]; but, it is not clear that the higher exterior powers of $d d^{c} u$ are well defined. In fact, examples indicate that it is probably not possible to define $\left(d d^{c} u\right)^{n}$ as a distribution for all plurisubharmonic functions u [7]. However, for bounded, C^{2} plurisubharmonic functions, Chern, Levine, and Nirenberg [3] have given an estimate which makes it clear how to define $\left(d d^{c} u\right)^{n}$ when u is a continuous plurisubharmonic function. If $\|u\|_{\Omega}=$ $\sup \{|u(z)|: z \in \Omega\}$, then they prove that for each compact subset K of Ω, there is a constant $C=C(K)$ such that

$$
\int_{K}\left(d d^{c} u\right)^{n} \leqslant C\left\{\|u\|_{\Omega}\right\}^{n}
$$

for all C^{2} plurisubharmonic functions u on Ω. With this result (and its proof), it is easy to show that the operator $\left(d d^{c} u\right)^{n}$, thought of as a mapping from the C^{2} plurisubharmonic functions on Ω to the space of nonnegative Borel measures on Ω, has a continuous extension to the space of all continuous plurisubharmonic functions on Ω. It is with this definition of $\left(d d^{c} u\right)^{n}$ as a nonnegative Borel measure on Ω that we study the Dirichlet problem (1).

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 32F05, 35D05; Secondary 32E99.
 ${ }^{1}$ Research supported in part by a Sloan Foundation Grant to Courant Institute of Mathematical Sciences, New York University, and by the Army Research Office grant number DAHC04-75-G-0149.
 ${ }^{2}$ Research supported in part by the National Science Foundation Grant Number GP 37628.

