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ABSTRACT. The characterization of the Hardy space, H of the plane, 
as those integrable functions whose first order Riesz transforms are (or whose 
maximal function is) integrable is well known. J.-A. Chao and M. Taibleson 
have shown that there is a conjugate system characterization of H of a local 

1 2 field that parallels the Riesz system characterization of H (R ). C. Fefferman 

has conjectured that "nice" conjugate systems, such as the second order Riesz 
1 2 transforms would also give a characterization of H (R ). In the present paper 

a counter example of A. Gandulfo and M. Taibleson is described that shows that 

any conjugate system generated by an even kernel will fail to characterize H 

of a local field. A counter example of J. Garcia-Cuerva is described that shows 

that the second order Riesz system for the Euclidean plane (which is generated 
1 2 by an even kernel) will fail to characterize H (R ) in the above sense. 

Let ƒ G Lx(Rn) and let ƒ*(*) = supy>0\f(x, y)\, where ƒ(*, y) is the 
Poisson integral off. We say that ƒ G Hl(Rn) iff ƒ* G Lx(Rn). Let (r, 0) be 
the polar representation of (xv x2) G R2, and let ( • )" and ( • )" represents the 
Fourier transform and its inverse. The following characterization of Hl(R2) is in 
[5, §8]: 

THEOREM A Iff is real-valued andfEL^R2), then ƒ G H^R2) iff 
(eiefy GL'iR2). 

Similarly, if AT is a local field, e.g., a p-adic field, we may define f*(x) = 
suPfcez ' ƒ(*> *)l > where f(x, k) is the regularization of/. (See [6, Chapter IV].) 
We say that ƒ G Hl(K) iff ƒ* EL^K). The following characterization of 
HX(K) follows from results of Chao and Taibleson [3] and Chao [1], [2]. 

THEOREM B. Suppose n is a multiplicative character on K that is unitary, 
ramified of degree 1, homogeneous of degree 0 and odd. If fELl(K) then 
fEH\K)iff{Tify EL\K). 
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