ON PRIMARY BANACH SPACES

BY P. G. CASAZZA, C. A. KOTTMAN AND BOR-LUH LIN Communicated by Richard R. Goldberg, September 15, 1975

A Banach space X is called primary (resp. prime) if for every projection P on X, PX or (I - P)X (resp. PX with dim $PX = \infty$) is isomorphic to X. It is well known that c_0 and l_p , $1 \le p \le \infty$, are prime spaces [5], [8], but it is an open question whether there are other prime Banach spaces. However, it is known that C[0, 1] [7] and $L_p[0, 1], 1 [1], are primary, and in the recent Special Seminar on Functional Analysis at Urbana, Illinois, August, 1975, it is announced [2] that <math>C(K)$ is primary for any countable compact metric space K. For a discussion on prime and primary Banach spaces, we refer to [6].

For a Banach sequence space $(E, \|\cdot\|_E)$ and a sequence of Banach spaces $\{X_n\}$, we shall let $(X_1 \oplus X_2 \oplus \cdot \cdot \cdot)_E$ be the Banach space of all sequences $\{x_n\}$ such that $x_n \in X_n$, $n = 1, 2, \ldots$ and $(\|x_1\|, \|x_2\|, \ldots) \in E$ with the norm $\|\{x_n\}\| = \|(\|x_1\|, \|x_2\|, \ldots)\|_E$.

A basis $\{e_n\}$ in a Banach space X is called symmetric (cf. [10]) if every permutation $\{e_{\pi(n)}\}$ of $\{e_n\}$ is a basis of X, equivalent to $\{e_n\}$. For a basis $\{e_n\}$ of a Banach space X, we shall let X_n be the linear span of e_1, e_2, \ldots, e_n in X.

MAIN THEOREM. Let X be a Banach space with symmetric basis $\{e_n\}$. Then the following spaces are primary.

- (i) $(X \oplus X \oplus \cdots)_{l_p}, 1 , where X is not isomorphic to <math>l_1$.
- (ii) $(X_1 \oplus X_2 \oplus \cdots)_{l_p}$, $1 , and <math>(X_1 \oplus X_2 \oplus \cdots)_{c_0}$.
- (iii) $(l_{\infty} \oplus l_{\infty} \oplus \cdots)_{l_n}$, $1 \le p \le \infty$, and $(l_{\infty} \oplus l_{\infty} \oplus \cdots)_{c_0}$.

Different techniques are needed in each of the three cases, and the cases p = 1 or when X is isomorphic to l_1 have to be treated separately. The proof for (i) is similar to the technique developed in [3]. To prove (ii), we use Ramsey's combinatorial lemma [9] and the following

LEMMA. Let $M = \{m_i\}$ be a sequence of positive integers such that lim sup $m_i = \infty$. Then there exist rearrangements of M and the set of positive integers N into double sequences $\{m'_1, m'_2, \ldots; m''_1, m''_2, \ldots\}$ and $\{n'_1, n'_2, \ldots; n''_1, n''_2, \ldots\}$ such that $m'_i = n'_{2i-1} + n'_{2i}$ and $m''_{2i-1} + m''_{2i} = n''_{i'}$ $i = 1, 2, \ldots$

AMS (MOS) subject classifications (1970). Primary 46B15.

Copyright © 1976, American Mathematical Society