ON PRIMARY BANACH SPACES

BY P. G. CASAZZA, C. A. KOTTMAN AND BOR-LUH LIN

Communicated by Richard R. Goldberg, September 15, 1975
A Banach space X is called primary (resp. prime) if for every projection P on $X, P X$ or $(I-P) X$ (resp. $P X$ with $\operatorname{dim} P X=\infty)$ is isomorphic to X. It is well known that c_{0} and $l_{p}, 1 \leqslant p \leqslant \infty$, are prime spaces [5], [8], but it is an open question whether there are other prime Banach spaces. However, it is known that $C[0,1]$ [7] and $L_{p}[0,1], 1<p<\infty[1]$, are primary, and in the recent Special Seminar on Functional Analysis at Urbana, Illinois, August, 1975, it is announced [2] that $C(K)$ is primary for any countable compact metric space K. For a discussion on prime and primary Banach spaces, we refer to [6].

For a Banach sequence space $\left(E,\|\cdot\|_{E}\right)$ and a sequence of Banach spaces $\left\{X_{n}\right\}$, we shall let $\left(X_{1} \oplus X_{2} \oplus \cdots\right)_{E}$ be the Banach space of all sequences $\left\{x_{n}\right\}$ such that $x_{n} \in X_{n}, n=1,2, \ldots$ and $\left(\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots\right) \in E$ with the norm $\left\|\left\{x_{n}\right\}\right\|=\left\|\left(\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots\right)\right\|_{E}$.

A basis $\left\{e_{n}\right\}$ in a Banach space X is called symmetric (cf. [10]) if every permutation $\left\{e_{\pi(n)}\right\}$ of $\left\{e_{n}\right\}$ is a basis of X, equivalent to $\left\{e_{n}\right\}$. For a basis $\left\{e_{n}\right\}$ of a Banach space X, we shall let X_{n} be the linear span of $e_{1}, e_{2}, \ldots, e_{n}$ in X.

Main Theorem. Let X be a Banach space with symmetric basis $\left\{e_{n}\right\}$. Then the following spaces are primary.
(i) $(X \oplus X \oplus \cdots)_{l_{p}}, 1<p<\infty$, where X is not isomorphic to l_{1}.
(ii) $\left(X_{1} \oplus X_{2} \oplus \cdots \cdot\right)_{l_{p}}, 1<p<\infty$, and $\left(X_{1} \oplus X_{2} \oplus \cdots \cdot\right)_{c_{0}}$.
(iii) $\left(l_{\infty} \oplus l_{\infty} \oplus \cdots\right)_{l_{p}}, 1 \leqslant p \leqslant \infty$, and $\left(l_{\infty} \oplus l_{\infty} \oplus \cdots\right)_{c_{0}}$.

Different techniques are needed in each of the three cases, and the cases $p=1$ or when X is isomorphic to l_{1} have to be treated separately. The proof for (i) is similar to the technique developed in [3]. To prove (ii), we use Ramsey's combinatorial lemma [9] and the following

Lemma. Let $M=\left\{m_{i}\right\}$ be a sequence of positive integers such that $\lim \sup m_{i}=\infty$. Then there exist rearrangements of M and the set of positive integers N into double sequences $\left\{m_{1}^{\prime}, m_{2}^{\prime}, \ldots ; m_{1}^{\prime \prime}, m_{2}^{\prime \prime}, \ldots\right\}$ and $\left\{n_{1}^{\prime}, n_{2}^{\prime}\right.$, $\left.\ldots ; n_{1}^{\prime \prime}, n_{2}^{\prime \prime}, \ldots\right\}$ such that $m_{i}^{\prime}=n_{2 i-1}^{\prime}+n_{2 i}^{\prime}$ and $m_{2 i-1}^{\prime \prime}+m_{2 i}^{\prime \prime}=n_{i}^{\prime \prime}, i=$ 1, 2,

