A SUFFICIENT CONDITION FOR *k*-PATH HAMILTONIAN DIGRAPHS

BY JOHN ROBERTS

Communicated by Walter Gautschi, September 7, 1975

A directed graph (or digraph) D is: (1) traceable if D has a hamiltonian path; (2) hamiltonian if D has a hamiltonian cycle; (3) strongly hamiltonian if D has arcs and each arc lies on a hamiltonian cycle; (4) hamiltonian-connected if D has a hamiltonian u-v path for every pair of distinct vertices u and v; (5) k-path traceable if every path of length not exceeding k is contained in a hamiltonian path; and (6) k-path hamiltonian if every path of length not exceeding k is contained in a hamiltonian cycle.

The indegree and the outdegree of a vertex v are denoted by id(v) and od(v) respectively. A digraph D of order p is of Ore-type (k) if $od(u) + id(v) \ge p + k$ whenever u and v are distinct vertices for which uv is not an arc of D.

In this research announcement we outline a proof of the following result, a complete proof of which will appear elsewhere, and present some consequences of it.

THEOREM. If a nontrivial digraph D is of Ore-type (k), $k \ge 0$, then D is k-path hamiltonian.

PROOF. Let D have order $p \ge 2$. First, observe that D is strong. Since the result holds if D is the complete symmetric digraph K_p , we assume that $D \ne K_p$. This in turn implies that $p \ge k + 4$. Also, it can be shown that every path of length not exceeding k is contained in a path of length (k + 1) and this longer path is contained in a cycle.

Suppose D has a path P: $v_1, v_2, \ldots, v_{k+1}$ of length k which is contained in no hamiltonian cycle. Let C: $v_1, v_2, \ldots, v_n, v_1$ be any longest cycle containing P. Then, $V \equiv V(D) - V(C) \neq \emptyset$, where V(D) and V(C) denote the vertex sets of D and C respectively.

Now, assume that V has distinct vertices u and v for which $uv \notin E(D)$ and the subdigraph $\langle V \rangle$ induced by V has no v-u path. Then, $vu \notin E(D)$ implies that

(1)
$$p + k \le \mathrm{od}(v) + \mathrm{id}(u) \le p - n - 2 + \mathrm{od}(v, C) + \mathrm{id}(u, C)$$

where od(v, C) and id(u, C) denote the number of vertices in C which are

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 05C20.

Key words and phrases. Digraphs, traceable, hamiltonian, hamiltonian-connected, strongly hamiltonian, k-path hamiltonian, k-path traceable.