A DIRECTION OF BIFURCATION FORMULA IN THE THEORY OF THE IMMUNE RESPONSE ${ }^{1}$

BY GEORGE H. PIMBLEY, JR.

Communicated by A. H. Householder, September 7, 1975
In previous work [1], I derived by biological reasoning and mathematical reduction the following system, attributable to G. I. Bell:

$$
\begin{gather*}
d u / d s=u\left[\lambda_{1}+k \lambda_{1} u-k\left(\alpha_{1}-\lambda_{1}\right) v+k n \lambda_{1} w\right] \tag{1a}\\
d v / d s=\beta\left\{v\left[-\lambda_{2}-k\left(\alpha_{2}+\lambda_{2}\right) u-k \lambda_{2} v-k n \lambda_{2} w\right]+k \gamma u w\right\} \\
d w / d s=w\left[-\lambda_{3}+k\left(\alpha_{3}-\lambda_{3}\right) u-k \lambda_{3} v-k n \lambda_{3} w-\left(k \alpha_{3} / \theta\right) u w\right]
\end{gather*}
$$

Equations (1) simulate the immune response of an organism to antigen invasion. The dependent variables u, v, w are, respectively the concentrations of antigens, antibodies, and antibody-producing cells. The meanings of all parameters and constants are found in [1, pp. 93-96].

Equations (1) have two nontrivial rest points. The one nearest the origin, $\left(u_{f}, v_{f}, w_{f}\right)$, is stable or unstable according to whether $\beta>\beta_{c}$ or $\beta<\beta_{c}$, where $\beta_{c}>0$ is a critical value of the parameter β in equation (1b). It is shown [1, Theorem 1] that at $\beta=\beta_{c}$, a continuous family of periodic solutions bifurcates from (u_{f}, v_{f}, w_{f}). I was able to obtain a direction of bifurcation formula only in the special case where $\lambda_{3}=0$. Namely, periodic solutions bifurcate to the left (right) of β_{c}, and are stable (unstable) if

$$
\begin{equation*}
\beta_{c}>\left(\alpha_{1}-\lambda_{1}\right) \lambda_{1} /\left(\left(\alpha_{1}-\lambda_{1}\right)\left(\alpha_{2}+\lambda_{2}\right)+2 \lambda_{1} \lambda_{2}\right), \quad(<) \tag{2}
\end{equation*}
$$

Herein I announce the development of a general formula for direction of bifurcation in equations (1), which approaches condition (2) as $\lambda_{3} \rightarrow 0$. An analytic direction of bifurcation formula will be important in developing the global theory of these bifurcated families of periodic solutions, and in ascribing possible biomedical implications. I describe the new formula.

First we substitute $u=u_{f}+u^{0}, v=v_{f}+v^{0}, w=w_{f}+w^{0}$ into equations (1), and thus obtain equations centered at $\left(u_{f}, v_{f}, w_{f}\right)$. Then we let $A_{\beta_{c}}$ be the matrix of the linear part of these centered DE's, with $\beta=\beta_{c}$. The matrix $A_{\beta_{c}}$ has the three linearly independent eigenvectors represented symbolically as

$$
\begin{equation*}
\left(\xi_{1}, \eta_{1}, \zeta_{1}\right), \quad\left(\bar{\xi}_{1}, \bar{\eta}_{1}, \bar{\zeta}_{1}\right), \quad(\xi, \eta, \zeta) \tag{3}
\end{equation*}
$$

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 92A05; Secondary 34C05.
 ${ }^{1}$ Work performed under the auspices of the U. S. Energy Research and Development Administration.

