OPTIMAL LIPSCHITZ AND L^p ESTIMATES FOR THE EQUATION $\overline{\partial}u = f$ ON STRONGLY PSEUDO-CONVEX DOMAINS¹

BY S. G. KRANTZ²

Communicated by François Treves, August 5, 1975

For definitions and notation in what follows, see Hörmander [5]. Let $\mathcal{D} \subset \subset \mathbb{C}^n$ be strongly pseudo-convex with C^5 boundary. Let

$$\Lambda_{\alpha}(\mathcal{D}) = \left\{ f \colon \mathcal{D} \longrightarrow \mathbf{C} : \left\| f \right\|_{L^{\infty}} + \sup_{z, z+h \in \mathcal{D}} \frac{|f(z) - f(z+h)|}{|h|^{\alpha}} = \left\| f \right\|_{\Lambda_{\alpha}} < \infty \right\},$$

$$L^{p}(\mathcal{D}) = \left\{ f \colon \mathcal{D} \longrightarrow \mathbf{C} \colon \int_{\mathcal{D}} |f|^{p} \, dL < \infty \right\}, \quad 1 \leq p < \infty,$$

where dL is Lebesgue measure.

We wish to announce Lipschitz and L^p regularity results for Henkin's solution to $\overline{\partial u} = f$, f = (0, 1) form with $\overline{\partial f} = 0$, which are essentially best possible, not only for his solution, but for any solution to the equation. More precisely,

THEOREM 1. There exists a linear operator T taking $\overline{\partial}$ closed (0, 1) forms with coefficients in $C^{\infty}(\mathcal{D})$ to functions in $C^{\infty}(\mathcal{D})$ and satisfying

(a) $\overline{\partial}Tf = f$,

(b)
$$\|Tf\|_{L^p} \leq A_p \|f\|_{L^p}$$
, $1 , $1/q = 1/p - 1/(2n + 2)$,$

- (c) $\|Tf\|_{\Lambda_{1/2-(n+1)/p}} \leq A_p \|f\|_{L^p}$, 2n+2 ,
- (d) $\|Tf\|_{L^{(2n+2)/(2n+1)-\epsilon}} \leq A_{\epsilon} \|f\|_{L^{1}}, \ \epsilon > 0,$

(e) $\int_{\mathcal{D}} \exp(a/\|f\|_{L^{2n+2}} |Tf|^{(2n+2)/(2n+1)}) dL \leq C$, where a, C do not depend on f.

The constants a, C, A_{ϵ} , A_{p} are independent of "small" perturbations of dD.

We give examples to show that

(b') $\exists \mathcal{D} \subset \subset \mathbb{C}^n$ and $f_p \in C^{\infty}_{(0,1)}(\mathcal{D})$ such that \mathcal{D} is strongly pseudo-convex, $\|f_p\|_{L^{p-\epsilon}} < \infty \quad \forall \epsilon > 0, \quad \overline{\partial} f_p = 0$, and no *u* satisfies both $\overline{\partial} u = f_p$ and $\|u\|_{L^q} < \infty$, $1/q = 1/p - 1/(2n+2), \quad 1$

AMS (MOS) subject classifications (1970). Primary 35N15.

 $^{^{1}}$ Much of this work appeared in the author's Princeton University Ph. D. Thesis. He was supported by an NSF Graduate Fellowship.

 $^{^{2}}$ The author is grateful to E. M. Stein for suggesting this problem, and for guidance and encouragement during its solution.