OPTIMAL LIPSCHITZ AND L^{p} ESTIMATES FOR THE EQUATION $\bar{\partial} u=f$ ON STRONGLY PSEUDO-CONVEX DOMAINS ${ }^{1}$

BY S. G. KRANTZ ${ }^{2}$
Communicated by François Treves, August 5, 1975

For definitions and notation in what follows, see Hörmander [5]. Let $D \subset \subset \mathbf{C}^{n}$ be strongly pseudo-convex with C^{5} boundary. Let

$$
\begin{aligned}
& \Lambda_{\alpha}(\mathcal{D})=\left\{f: \mathcal{D} \rightarrow \mathbf{C}:\|f\|_{L^{\infty}}+\sup _{z, z+h \in \mathcal{D}} \frac{|f(z)-f(z+h)|}{|h|^{\alpha}}=\|f\|_{\Lambda_{\alpha}}<\infty\right\} \\
& L^{p}(\mathcal{D})=\left\{f: \mathcal{D} \rightarrow \mathbf{C}: \int_{\mathcal{D}}|f|^{p} d L<\infty\right\}, \quad 1 \leqslant p<\infty
\end{aligned}
$$

where $d L$ is Lebesgue measure.
We wish to announce Lipschitz and L^{p} regularity results for Henkin's solution to $\bar{\partial} u=f, f$ a $(0,1)$ form with $\bar{\partial} f=0$, which are essentially best possible, not only for his solution, but for any solution to the equation. More precisely,

Theorem 1. There exists a linear operator T taking $\bar{\partial}$ closed $(0,1)$ forms with coefficients in $C^{\infty}(\mathcal{D})$ to functions in $C^{\infty}(\mathcal{D})$ and satisfying
(a) $\bar{\partial} T f=f$,
(b) $\|T f\|_{L} q \leqslant A_{p}\|f\|_{L^{p}}, 1<p<2 n+2,1 / q=1 / p-1 /(2 n+2)$,
(c) $\|T f\|_{\Lambda_{1 / 2-(n+1) / p}} \leqslant A_{p}\|f\|_{L p}, \quad 2 n+2<p \leqslant \infty$,
(d) $\|T f\|_{L}(2 n+2) /(2 n+1)-\epsilon \leqslant A_{\epsilon}\|f\|_{L^{1}}, \epsilon>0$,
(e) $\int_{\mathcal{D}} \exp \left(a /\|f\|_{L^{2 n+2}}|T f|^{(2 n+2) /(2 n+1)}\right) d L \leqslant C$, where a, C do not depend on f.

The constants $a, C, A_{\epsilon}, A_{p}$ are independent of "small" perturbations of $d D$.
We give examples to show that
(b') $\exists D \subset \subset C^{n}$ and $f_{p} \in C_{(0,1)}^{\infty}(\mathcal{D})$ such that D is strongly pseudo-convex, $\left\|f_{p}\right\|_{L^{p-\epsilon}}<\infty \quad \forall \epsilon>0, \bar{\partial} f_{p}=0$, and no u satisfies both $\bar{\partial} u=f_{p}$ and $\|u\|_{L^{q}}<\infty$, $1 / q=1 / p-1 /(2 n+2), 1<p<2 n+2$.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 35N15.
 ${ }^{1}$ Much of this work appeared in the author's Princeton University Ph. D. Thesis. He was supported by an NSF Graduate Fellowship.
 ${ }^{\mathbf{2}}$ The author is grateful to E. M. Stein for suggesting this problem, and for guidance and encouragement during its solution.

