THE HOLOMORPHIC LEFSCHETZ FORMULA

BY DOMINGO TOLEDO ${ }^{1}$ AND YUE LIN L. TONG ${ }^{2}$

Communicated by Hyman Bass, October 11, 1974
Let X be a compact complex manifold and let $f: X \rightarrow X$ be a holomorphic map. One can assign to each component Y of the fixed point set F of f a complex number $\nu_{Y}(f)$ so that

$$
L(f, 0)=\sum_{Y} \nu_{Y}(f) .
$$

$L(f, 0)$ denotes the Lefschetz number on $H^{*}(X, 0)$. In this note we outline a computation of $\nu_{Y}(f)$ in the case that Y is a nondegenerate component of F, i.e., Y is a submanifold of X, and if $d f^{N}$ denotes the map induced by $d f$ on the normal bundle of Y, then $\operatorname{det}\left(1-d f^{N}\right) \neq 0$. Our result is that $\nu_{Y}(f)$ is given by the same formula proved by Atiyah and Singer [3] in the case that f is an isometry. If $\operatorname{dim} Y=0$ the formula was known without this restriction on f by Atiyah and Bott [2]. Patodi [7] was able to remove the restriction on f under other assumptions, which are vacuous if $\operatorname{dim} Y=1$.

Our methods are purely algebraic, and go through in algebraic geometry of characteristic zero. In particular, for $f=$ identity, we obtain a simpler justification of the local formula used in [8] to prove the Riemann-Roch theorem that is also valid in the algebraic category.

We thank R. Bott, G. Lusztig and D. Mumford for several helpful discussions.

1. Statement of the formula. Let N denote the normal bundle of Y and let $\lambda_{1}, \ldots, \lambda_{m}$ be the eigenvalues of $d f^{N} . N$ splits as direct sum of bundles N_{i} of dimension d_{i} on which $d f^{N}-\lambda_{i} 1$ is nilpotent. Then the component of degree zero of the characteristic class $\Sigma_{p=0}^{d_{i}}(-1)^{p} \lambda_{i}^{p} \operatorname{ch}\left(\Lambda^{p} N_{i}^{*}\right)$ is $\left(1-\lambda_{i}\right)^{d_{i}} \neq 0$, hence this class is invertible in the cohomology ring of Y. The formula for $\nu_{Y}(f)$ is

$$
\begin{equation*}
\nu_{Y}(f)=\int_{Y} T(Y)\left\{\prod_{i=1}^{m} \sum_{p=0}^{d_{i}}(-1)^{p} \lambda_{i}^{p} \operatorname{ch}\left(\Lambda^{p} N_{i}^{*}\right)\right\}^{-1} \tag{1.1}
\end{equation*}
$$

$T(Y)$ is the total Todd class of Y and the integral sign denotes evaluation on the fundamental cycle. We always think of characteristic classes as taking values in

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 14B15, 32C10, 58G10.
 ${ }^{1}$ Supported in part by National Science Foundation grant GP-36418X1.
 ${ }^{2}$ Supported in part by National Science Foundation grant GP-42675.

