STABILITY OF EQUIVARIANT SMOOTH MAPS

BY V. POÉNARU

Communicated May 6, 1975

This research announcement is a summary of a paper which will appear elsewhere [5], and which continues the program started in [4].

1. We consider a compact Lie group G and smooth compact G-manifolds X and Y. By $C^{\infty}_{G}(X, Y)$, $\text{Diff}_{G}(X)$, $\text{Diff}_{G}(Y)$ we denote the C^{∞} , G-equivariant mappings $X \to Y$, respectively, diffeos of X or diffeos of Y.

There is a natural group action

$$\operatorname{Diff}_{G}(X) \times \operatorname{Diff}_{G}(Y) \times C^{\infty}_{G}(X, Y) \xrightarrow{\Phi} C^{\infty}_{G}(X, Y),$$

and for each $f \in C^{\infty}_{G}(X, Y)$, we define the corresponding orbit-map

$$\operatorname{Diff}_{G}(X) \times \operatorname{Diff}_{G}(Y) \xrightarrow{\Phi_{f}} C_{G}^{\infty}(X, Y).$$

We consider the G-bundles TX, TY, f^*TY and their "invariant sections" $\Gamma^{\infty}(TX)^G$, $\Gamma^{\infty}(TY)^G$, $\Gamma^{\infty}(f^*TY)^G$. (These are modules over the corresponding rings of G-invariant functions.)

As in the usual case [3], [6] we have linear mappings

$$\Gamma^{\infty}(TX)^{G} \xrightarrow{\beta_{f}} \Gamma^{\infty}(f^{*}TY)^{G}$$

$$\Gamma^{\infty}(TY)^{G} \xrightarrow{\alpha_{f}} \Gamma^{\infty}(f^{*}TY)^{G}$$

defined in a natural way.

By definition, f is infinitesimally stable if $\alpha_f + \beta_f$ is surjective. By definition, f is stable if Image Φ_f is a neighbourhood of $f \in C_G^{\infty}(X, Y)$. With these definitions we have the

STABILITY THEOREM. Let $f \in C^{\infty}_{G}(X, Y)$ be infinitesimally stable. Then:

(i) Whenever Z_1 is the germ of a metrizable or compact topological space, Z_2 the germ of a smooth finite dimensional manifold, and $\psi: Z_1 \times Z_2 \rightarrow C_G^{\infty}(X, Y) \ a \ C^{0,\infty}$ -germ of a map sending the base points to f, there is a germ of a $C^{0,\infty}$ map $\Psi: Z_1 \times Z_2 \rightarrow \text{Diff}_G(X) \times \text{Diff}_G(Y)$ sending the base points to (id X) × (id Y) and such that

Copyright © 1975, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 58C25.