THE STRUCTURE OF SINGULARITIES IN AREA-RELATED VARIATIONAL PROBLEMS WITH CONSTRAINTS

BY JEAN E. TAYLOR ${ }^{1}$
Communicated by S. S. Chern, July 3, 1975

This is a research announcement of results whose full details and proofs have been submitted for publication elsewhere. We provide a complete description, both combinatorial and differential, of the local structure of singularities in a large class of two-dimensional surfaces in $\mathbf{R}^{\mathbf{3}}$, those which are ($\mathbf{M}, \epsilon, \delta$) minimal [TJ1] and those which are ($\mathbf{F}, \boldsymbol{\epsilon}, \delta$) minimal for a Hölder continuous ellipsoidal integrand F [TJ2]. Such surfaces include mathematical models for compound soap bubbles [AF1], [AF2] and soap films, thereby settling a problem which has been studied for well over a century (a very general formulation of Plateau's Problem); in general, ($\mathbf{M}, \boldsymbol{\epsilon}, \delta$) and ($\mathbf{F}, \boldsymbol{\epsilon}, \delta$) minimal surfaces arise as solutions to geometric variational problems with constraints.
$(\mathbf{M}, \boldsymbol{\epsilon}, \boldsymbol{\delta})$ and $(\mathbf{F}, \boldsymbol{\epsilon}, \delta)$ minimal surfaces were defined, shown to exist, and proven to be regular almost everywhere in [AF2] (see [AF1] for a brief description). We define $Y \subset \mathbf{R}^{3}$ as the union of the half disk $\left\{x \in \mathbf{R}^{3}: x_{1}^{2}+x_{2}^{2} \leqslant 1\right.$, $\left.x_{2} \geqslant 0, x_{3}=0\right\}$ with its rotations by 120° and 240° about the x_{1} axis, and define $T \subset \mathbf{R}^{3}$ as $C \cap\{x:|x| \leqslant 1\}$, where C is the central cone over the one-skeleton of the regular tetrahedron centered at the origin and containing as vertices the points $(3,0,0)$ and $(-1,2 \sqrt{2,0})$. Varifold tangents are defined in [AW 3.4] and a tangent cone is defined to be the support of a varifold tangent.

The major result of [TJ1] is the following.
Theorem. Suppose S is $(\mathbf{M}, \epsilon, \delta)$ minimal with respect to some closed set B, where $\epsilon(r)=C r^{\alpha}$ for some $C<\infty$ and $\alpha>0$. Then
(1) there exists a unique tangent cone, denoted $\operatorname{Tan}(S, p)$, to S at each point p in S,
(2) $R(S)=\{p \in S: \operatorname{Tan}(S, p)$ is a disk\} is a two-dimensional Hölder continuously differentiable submanifold of \mathbf{R}^{3}, with $H^{2}(R(S))=H^{2}(S)$ [AF1], [AF2] (here H^{2} denotes (Hausdorff) two-dimensional area),
(3) $\sigma_{Y}(S)=\{p \in S$: $\operatorname{Tan}(S, p)=\theta Y$ for some θ in $\mathbf{O}(3)$, the group of

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 49F22, 49F20, 53A10; Secondary 53C65, 82 A50.
 ${ }^{1}$ This research was supported in part by National Science Foundation grants GP 42451 and MPS 72-05055 A02.

