NORMAL SELF-INTERSECTIONS OF THE CHARACTERISTIC VARIETY

BY RICHARD B. MELROSE ${ }^{1}$

Communicated by I. M. Singer, May 27, 1975
Let $P=P_{1} P_{2}+Q$ be a linear partial differential operator on \mathbf{R}^{N} with P_{1} and P_{2}, of orders m_{1} and m_{2}, respectively, strictly hyperbolic with respect to the first variable and Q of order $m_{1}+m_{2}-2$. Although the characteristic variety of P may have self-intersections, the hyperbolicity of P_{1} and P_{2} implies local solvability for $P u=f$; indeed the Cauchy problem for P is locally solvable. In this note we shall consider the propagation of singularities near the simplest type of point $z_{0} \in T^{*} \mathbf{R}^{N} \backslash 0$ where the principal symbol $p=p_{1} p_{2}$ of P has a multiple zero.

We shall suppose that the characteristic varieties $A\left(P_{1}\right)$ and $A\left(P_{2}\right)$ of P_{1} and P_{2} intersect normally at z_{0}, that is, $d p_{1}\left(z_{0}\right)$ and $d p_{2}\left(z_{0}\right)$ are linear independent. In addition, it will be assumed that the Poisson bracket $\left\{p_{1}, p_{2}\right\}\left(z_{0}\right) \neq 0$. This latter assumption means that the Hamiltonian vector fields $H_{p_{1}}$ and $H_{p_{2}}$ are not tangent to $A\left(P_{1}\right) \cap A\left(P_{2}\right)$ at z_{0}. So, the two forward pointing bicharacteristics (of p_{1} and p_{2}) through z_{0} consist, near z_{0}, of nonsingular points of $A(P)$, except for z_{0} itself. Let these curves be denoted by $c_{i} ; \mathbf{R} \supset I \ni \rho \longrightarrow c_{i}(\rho)$ where I is an open interval containing $0, c_{i}(0)=z_{0}$ and $\left(c_{i}\right)_{*}(d / d \rho)=H_{p_{i}}$. It will be assumed that I is chosen so small that

$$
\begin{equation*}
c_{i}(I) \cap A\left(P_{j}\right)=\left\{z_{0}\right\}, \quad i \neq j \tag{1}
\end{equation*}
$$

If $I^{+}\left(I^{-}\right)$is the open interval consisting of the positive (negative) points in I then, by Hörmander's Theorem [4, Theorem 3.2.1], if $u \in D^{\prime}\left(\mathbf{R}^{N}\right), z_{0} \notin W F(P u)$ and I is chosen so small that

$$
\begin{equation*}
c_{i}(I) \cap W F(P u)=\varnothing, \quad i=1,2 \tag{2}
\end{equation*}
$$

then either $c_{i}\left(I^{ \pm}\right) \subset W F(u)$ or $c_{i}\left(I^{ \pm}\right) \cap W F(u)=\varnothing$ separately for the four choices of sign and bicharacteristic. Hörmander's Theorem does not, however, give any information as to whether $z_{0} \in W F(u)$ or not.

Theorem. Suppose $A\left(P_{1}\right)$ and $A\left(P_{2}\right)$ intersect normally at z_{0} and that $\left\{p_{1}, p_{2}\right\}\left(z_{0}\right) \neq 0$. If $u \in \mathcal{D}^{\prime}\left(\mathbf{R}^{N}\right), z_{0} \notin W F(P u)$ and I is chosen so small that (1) and (2) hold, then either $c_{i}\left(I^{+}\right) \cap W F(u)=\varnothing$ for $i=1,2$, or $c_{i}\left(I^{-}\right) \cap W F(u)=$ \varnothing for $i=1,2$ implies $z_{0} \notin W F(u)$ and $c_{i}(I) \cap W F(u)=\varnothing$ for $i=1,2$.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 35D10, 35P20.
 ${ }^{1}$ This research, carried out at MIT, was supported in part by a grant from the Science Research Council.

