NORMAL SELF-INTERSECTIONS OF THE CHARACTERISTIC VARIETY

BY RICHARD B. MELROSE¹

Communicated by I. M. Singer, May 27, 1975

Let $P=P_1P_2+Q$ be a linear partial differential operator on \mathbf{R}^N with P_1 and P_2 , of orders m_1 and m_2 , respectively, strictly hyperbolic with respect to the first variable and Q of order m_1+m_2-2 . Although the characteristic variety of P may have self-intersections, the hyperbolicity of P_1 and P_2 implies local solvability for Pu=f; indeed the Cauchy problem for P is locally solvable. In this note we shall consider the propagation of singularities near the simplest type of point $z_0 \in T^*\mathbf{R}^N \setminus 0$ where the principal symbol $p=p_1p_2$ of P has a multiple zero.

We shall suppose that the characteristic varieties $A(P_1)$ and $A(P_2)$ of P_1 and P_2 intersect normally at z_0 , that is, $dp_1(z_0)$ and $dp_2(z_0)$ are linear independent. In addition, it will be assumed that the Poisson bracket $\{p_1, p_2\}(z_0) \neq 0$. This latter assumption means that the Hamiltonian vector fields H_{p_1} and H_{p_2} are not tangent to $A(P_1) \cap A(P_2)$ at z_0 . So, the two forward pointing bicharacteristics (of p_1 and p_2) through p_2 consist, near p_2 0, of nonsingular points of p_2 0, except for p_2 0 itself. Let these curves be denoted by p_2 1; p_2 2, where p_2 3 is an open interval containing p_2 3, p_2 4, and p_2 5, and p_2 6, where p_2 6 is an open interval containing p_2 6, p_2 7, and p_2 8, and p_2 9 where p_2 9 is a sumed that p_2 9 is chosen so small that

(1)
$$c_i(I) \cap A(P_j) = \{z_0\}, \quad i \neq j.$$

If I^+ (I^-) is the open interval consisting of the positive (negative) points in I then, by Hörmander's Theorem [4, Theorem 3.2.1], if $u \in \mathcal{D}'(\mathbf{R}^N)$, $z_0 \notin WF(Pu)$ and I is chosen so small that

(2)
$$c_i(I) \cap WF(Pu) = \emptyset, \quad i = 1, 2,$$

then either $c_i(I^\pm) \subset WF(u)$ or $c_i(I^\pm) \cap WF(u) = \emptyset$ separately for the four choices of sign and bicharacteristic. Hörmander's Theorem does not, however, give any information as to whether $z_0 \in WF(u)$ or not.

THEOREM. Suppose $A(P_1)$ and $A(P_2)$ intersect normally at z_0 and that $\{p_1, p_2\}(z_0) \neq 0$. If $u \in \mathcal{D}'(\mathbf{R}^N)$, $z_0 \notin WF(Pu)$ and I is chosen so small that (1) and (2) hold, then either $c_i(I^+) \cap WF(u) = \emptyset$ for i = 1, 2, or $c_i(I^-) \cap WF(u) = \emptyset$ for i = 1, 2 implies $z_0 \notin WF(u)$ and $c_i(I) \cap WF(u) = \emptyset$ for i = 1, 2.

AMS (MOS) subject classifications (1970). Primary 35D10, 35P20.

¹This research, carried out at MIT, was supported in part by a grant from the Science Research Council.

Copyright © 1975, American Mathematical Society