A PRESENTATION FOR SOME $K_2(n, R)$

BY WILBERD VAN DER KALLEN, HENDRIK MAAZEN AND JAN STIENSTRA Communicated by Stephen S. Shatz, May 14, 1975¹

1. All rings are commutative with identity. We announce a presentation for the K_2 of a class of rings which includes the local ones. We also give a presentation for the relative K_2 of a homomorphism that splits and has its kernel in the Jacobson radical. These results generalize (and were suggested by) various earlier ones: the presentation of Matsumoto for the K_2 of (infinite) fields [6], [7, §11, 12]; the presentation of Dennis and Stein for the K_2 of discrete valuation rings and homomorphic images thereof [2]; stability results of the same authors [4]; the presentation for the relative K_2 of dual numbers, by one of us [5]. We reproved most of the earlier results and generalized them in the process.

2. The functor D (cf. [3, §9]).

2.1. Let R be a ring, R^* its group of units. We define the abelian group D(R) by the following presentation:

Generators are the symbols $\langle a, b \rangle$ with $a, b \in R$ such that $1 + ab \in R^*$. Relations are: (D0) commutativity.

(D1) $\langle a, b \rangle \langle -b, -a \rangle = 1$.

(D2)
$$\langle a, b \rangle \langle a, c \rangle = \langle a, b + c + abc \rangle.$$

(D3) $\langle a, bc \rangle = \langle ab, c \rangle \langle ac, b \rangle$.

In all of these relations it is assumed that the left-hand sides make sense. For instance, in (D3) one needs $a, b, c \in R$ with $1 + abc \in R^*$. D is a functor from (commutative) rings to abelian groups. It commutes with finite direct products.

2.2. Put $K_2(n, R) = \text{ker}(\text{St}(n, R) \rightarrow \text{SL}(n, R))$, so that $K_2(R) = \lim_{n \to \infty} K_2(n, R)$. Put $K_2(\infty, R) = K_2(R)$. Relations (D1), (D2), (D3) imply the relations in [3, §9] and vice versa. So the rule

$$\langle a, b \rangle \mapsto x_{21} \left(\frac{-b}{1+ab} \right) x_{12}(a) x_{21}(b) x_{12} \left(\frac{-a}{1+ab} \right) h_{12}^{-1}(1+ab)$$

defines a homomorphism $D(R) \rightarrow K_2(R)$ factoring through $K_2(3, R)$.

2.3. DEFINITION. R is called 3-fold stable if, for any triple of unimodular sequences $(a_1, b_1), (a_2, b_2), (a_3, b_3)$ there exists $r \in R$ such that $a_i + b_i r \in R^*$ for i = 1, 2, 3. (Recall that (a, b) is called unimodular if aR + bR = R.) Similar definitions can be given for k-fold stability, e.g., 1-fold stability is the strongest of Bass' stable range conditions $SR_n(R)$ [1]. The condition of 3-fold stability is

¹Originally received March 13, 1975.

AMS (MOS) subject classifications (1970). Primary 13D15, 14F15, 18F25; Secondary 13H99, 20F05.

Key words and phrases. Algebraic K-theory, presentation, Steinberg symbols.