A UNIVERSAL FORMAL GROUP AND COMPLEX COBORDISM

BY MICHIEL HAZEWINKEL¹

Communicated May 7, 1975

The purpose of this note is to 'announce' some of the results of [5], [6], [7] pertaining to formal groups and complex cobordism. These should have been written up a number of years ago. The phrase "formal group" is used as an abbreviation for commutative one-dimensional formal group (law).

1. Introduction. Below we give an explicit recursion formula for the logarithm of a universal commutative formal group and a p-typically universal commutative formal group. These give us a universal formal group F_U defined over $\mathbf{Z}[U] = \mathbf{Z}[U_2, U_3, U_4, \ldots]$ and a p-typically universal formal group F_T over $\mathbf{Z}[T_1, T_2, \ldots]$. Possibly the best way to look at these formal groups is as follows. To fix ideas let p be a fixed prime number and let A be a commutative ring with unit such that every prime number $\neq p$ is invertible in A. Let F_T be the one-dimensional p-typically universal formal group and G a one-dimensional formal group over A. Cartier [4] associates to G a module of curves C(G) over a certain ring $\operatorname{Cart}_p(A)$. The ring $\operatorname{Cart}_p(A)$ has as its elements expressions $\sum V^i[a_{ij}] \mathbf{f}^j, a_{ij} \in A$, which are added and multiplied according to certain rules, cf. [4] and [9]; V stands for the 'Verschiebung' associated to the prime number p and f stands for the 'Frobenius' associated to the prime number p. The left modules C over $\operatorname{Cart}_p(A)$ which arise as modules of curves of some one-dimensional commutative formal group are of the form

$$C \simeq \operatorname{Cart}_p(A) / \operatorname{Cart}_p(A) \left(\mathbf{f} - \sum_{i=1}^{\infty} V^i[t_i] \right), \quad t_i \in A.$$

Now let F_t be the formal group over A obtained by substituting t_i for T_i . Then $C(F_t) = C$.

2. The formulae. Choose a prime number p and let

(2.1)
$$l_n(T) = \sum T_{i_1} T_{i_2}^{p^{i_1}} \cdots T_{i_s}^{p^{i_1}+\cdots+i_{s-1}} / p^s$$

where the sum is over all sequences $(i_1, i_2, \ldots, i_s), i_j \in \mathbb{N} = \{1, 2, 3, \ldots\}$ such that $i_1 + \cdots + i_s = n$.

AMS (MOS) subject classifications (1970). Primary 14L05, 55B20.

Key words and phrases. Universal formal group, complex cobordism, generators for BP(pt) and MU(pt).

¹ Some of the results announced here were obtained in 1969/1970 while the author stayed at the Steklov Institute of Mathematics in Moscow and was supported by ZWO (the Netherlands Organization for advancement of Pure Research).