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1. Introduction. Throughout, (X, B) will be a standard Borel space, G some 
countable group of automorphisms, RG the equivalence relation {(x, g • x), g G G}, 

and fi a a-finite measure on X. For /x quasi-invariant, the orbit structure of the 
action has been studied by Dye [4], [5], Krieger [8] - [13] , and others. Here, 
ignoring G and focusing on RG via an axiomatization, and studying a cohomology 
for RG, we obtain a variety of results about group actions and von Neumann alge
bras. The major results are stated below. 

2. Equivalence relations. R will be an equivalence relation on X with all 

equivalence classes countable, and R G B x B. 

THEOREM 1. Every R is an RG. 

Properties of G-actions translate into properties of RG which can be stated 

with no G in sight, e.g., quasi-invariance, ergodicity. Let ju be quasi-invariant, and 

let C = 8 x BLR a nd Pi(x, y) = x, Pr(x, y) = y. Now C has a natural measure 

class as follows: 

THEOREM 2. The formula vt(C) = f\Pf * (x) n C\di4x), where \*\is cardinality, 

and a similar formula for vr define equivalent o-finite measures on C. 

The Radon-Nikodym derivative is the function D = dvr\dvx onR. UR=RG, 

then d(ji • g)/djji(x) = D(x, gx). Moreover, D is a cocycle in that D(x, y)D(y, z) 

= D(x, z) a.e. and the D' arising from a \xf equivalent to /i is cohomologous to D. 

For ergodic R, one has a classification into types which are ln, n = 1, . . . , 
°°, I I j , 11^ and III as in [3]. For j = 1,2, relations R. on (Xj, B;-, ty) are isomor
phic if there is a Borel isomorphism a: Xx —• X2 with p / i o f l " 1 and R2(a(x)) 

= a(Rx(xy) a.e. If the R- are ergodic, they are principal groupoids and, hence, 
define virtual groups [14]. 

THEOREM 3. Rx and R2 define isomorphic virtual groups iff each is isomor
phic to a restriction of the other, where the restriction of R to H is R O H x H. 
Hence, the two notions of isomorphism coincide if Rx and R2 are both of infinite 
type. 

Hyperfiniteness in terms of R becomes: 3 Rn t R with \Rn(x)\ finite V«, Vx 
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