IDEALS AND POWERS OF CARDINALS

BY KAREL PRIKRY¹

Communicated by Alistair Lachlan, April 28, 1975

We obtain results concerning the behaviour of the function $2^{\omega_{\alpha}}$ ($\alpha \in On$) under the assumption of the existence of certain kind of ideals. These results complement those of Ulam [7], Tarski [6] and Solovay [4] and [5]. In particular, it follows that if 2^{ω} is real-valued measurable, then $2^{\nu} = 2^{\omega}$ for all infinite $\nu < 2^{\omega}$.

We assume some familiarity with [4] and [5]. $\alpha, \beta, \gamma, \delta, \eta, \xi, \rho$ ($\kappa, \lambda, \nu, \tau$) denote ordinals (inf. cardinals). *f*, *g*, *h* denote functions; *F* denotes families of functions or sets. We use the Erdös-Hajnal notation $[S]^{\nu}$, $[S]^{<\nu}$, etc. (see [2]). *F* is λ -almost disjoint (λ -a.d.) if $|X \cap Y| < \lambda$ whenever $X, Y \in F$ and $X \neq Y$.

DEFINITION 1. κ is λ -real-supercompact (abbrev. λ -r.s.c.) if there is a real-valued κ -compl. measure μ defined on $\mathcal{P}([\lambda]^{<\kappa})$ such that

(i) $\mu([\lambda]^{<\kappa}) = 1;$

(ii) for every $\alpha \in \lambda$, $\mu(\{x: \alpha \notin x\}) = 0$;

(iii) if $\mu(X) > 0$ and $f: X \longrightarrow \lambda$ is such that $f(x) \in x$ for all $x \in X$, then there is $Y \subset X$ such that $\mu(Y) > 0$ and f is constant on Y.

 κ is r.s.c. if κ is λ -r.s.c. for all regular $\lambda \ge \kappa$. We define " κ is ω_1 -saturatedly supercompact" (abbrev. ω_1 -s.s.c.) by replacing μ by an ideal *I* in the obvious way.

One can show by the methods of [3] and [4] that if it is consistent that a s.c. cardinal exists, then it is consistent that 2^{ω} is r.s.c.

DEFINITION 2. $R_2(\kappa_0, \kappa_1)$ holds if for every partition $[\kappa_1]^2 = \bigcup\{K_{\xi}: \xi \in \lambda\}$, where $\omega < \lambda < \kappa_0$, there exists an $X \subseteq \kappa_1$ and $M \subseteq \lambda$ such that $|X| = \kappa_0$, $|M| < \lambda$, and $[X]^2 \subseteq \bigcup\{K_{\xi}: \xi \in M\}$.

THEOREM 1. Let $\lambda, \nu < \kappa, \omega < cf(\lambda)$ and $F \subseteq [\nu]^{\geq \lambda}$ be λ -a.d. If $R_2(\kappa, \kappa)$ holds and $cf(\kappa) > \omega$, then $|F| < \kappa$. If $R_2(\kappa, \kappa_1)$ holds and κ_1 is regular, then $|F| < \kappa_1$.

THEOREM 2. Set $2^{\omega} = \kappa$ and suppose that κ carries a κ -compl. ω_1 -sat. nontrivial ideal. Then

(a) for all $\nu < \kappa$, $2^{\nu} = \kappa$;

(b) if $I \subseteq P(\kappa)$ is ω_1 -compl., ω_1 -sat. and $[\kappa]^{<\kappa} \subseteq I$, then $|P(\kappa)/I| = 2^{\kappa}$;

(c) if $\nu < \kappa$ and $cf(\nu) > \omega$, then there is a family $F \subseteq {}^{\nu}\nu$ such that $|F| < \kappa$ and each $g \in {}^{\nu}\nu$ is dominated everywhere by some $f \in F$;

AMS (MOS) subject classifications (1970). Primary 02K35.

 $^{^{1}}$ Research supported by NSF grant GP-43841 and by a Fellowship from the Institute for Advanced Study.