IMAGES OF HOMOGENEOUS VECTOR BUNDLES AND VARIETIES OF COMPLEXES

BY GEORGE R. KEMPF¹

Communicated by Robert Fossum, April 21, 1975

Let G be a connected algebraic group with a given representation on a vector space V. Let W be a subspace of V. I propose to study the union of all the translates of W by $G, G \cdot W$.

Let P be a subgroup of G that stabilizes W. Let $X \to G/P$ be the homogeneous vector bundle over G/P, associated to the representation of P on W. Explicitly

$$X = \{(g, w) \in G \times W \text{ modulo } (g, w) \sim (gp^{-1}, pw) \text{ for } p \in P\}.$$

The representation $G \times V \longrightarrow V$ induces a morphism $f: X \longrightarrow V$. The image of f is $G \cdot W$.

THEOREM. Assume G/P is complete. Then $G \cdot W$ is a closed subvariety of V. Furthermore, if the characteristic of the ground field is zero, and if the actions of G on V and of P on W are completely reducible, then $G \cdot W$ is a normal Cohen-Macaulay variety, and if f is birational, then $G \cdot W$ has rational singularities.

The proof of this theorem uses the Borel-Weil-Bott theorem on the cohomology of homogeneous vector bundles [1] together with some facts surrounding the theory of rational resolutions [5].

The application that I have in mind for this theorem is the study of the singularities of the varieties of complexes introduced by Buchsbaum and Eisenbud [2].

I will first state what these varieties are. Let K^0, \ldots, K^n be a sequence of vector spaces. Let V be the direct sum of $\operatorname{Hom}(K^0, K^1), \ldots, \operatorname{Hom}(K^{n-1}, K^n)$. A point a in V is denoted (a_1, \ldots, a_n) , where $a_i \in \operatorname{Hom}(K^{i-1}, K^i)$. A point a in V represents a complex if $a_{i+1} \circ a_i = 0$ for 0 < i < n. The rank of a is the sequence of integers, (rank a_1, \ldots , rank a_n), where rank b is the dimension of the image of the homomorphism b. If (m_1, \ldots, m_n) is the rank of a complex, then $m_1 \leq \dim K^0, m_n \leq \dim K^n$, and $m_i + m_{i+1} \leq \dim K^i$ for 0 < i < n. Conversely, any such sequence is the rank of a complex. Let M be the set of such sequences.

If $m \in M$, define the variety of Buchsbaum and Eisenbud, B-E(m), to be the variety of complexes a, such that rank $a_i \leq m_i$ for $1 \leq i \leq n$.

AMS (MOS) subject classifications (1970). Primary 14M05, 14M15.

¹ Partly supported by the Sloan Foundation.