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We shall consider an order unit space (A, e) and a base-norm space (V, K) 

in separating order and norm duality with A pointwise monotone a-complete, i.e. 
for every descending sequence {an} inA + there exists a G A such that (a, x) = 
limn(an,x) for x GK. (See [1] for definitions and proofs.) We write M G TA if 
M is a weakly closed supporting hyperplane of A+ and F = C\ {ME TA\F C M} 

for F C A +. (One may think of F as a "minimal tangent space" for A+ at F.) 

M is a smooth order ideal of A if M = (A + n Af)~, and F is a semiexposed face 

of A+ if F — A + O F. For a projection P: A —* 4̂ we write im+ P = 4̂ + Pi imP, 
ker+ P = A+ H ker P. Two projections P, Q: A —* 4̂ are quasi-complementary 

(q.c) if im+ (2 = ker+ P, ker+ Q = im+ P. Similar definitions apply with V in 
place of A. A weakly continuous positive projection P of A (or V) with ||P|| < 1 
is smooth if ker P is a smooth order ideal. A projection R of V is neutral if \\Rv\\ 

= ||u|| implies Rv = u for u G F + . This term relates to physical filters which are 
"neutral" in that when a beam passes through with intensity undiminished Q\Rv\\ 

= ||u||), then the filter is neutral to it (Rv = u). 

THEOREM 1. For projections on A the following are equivalent: (i) P, Q 

are q.c. and so are the dual projections P*, Q*\ (ii) P, Q are q.c. and both are 

smooth; (iii) P*, Q* are q.c. and both are smooth; (iv) P, Q are q.c. and P*, Q* 

are neutral. 

P: A —> A is a P-projection (in symbols P G P) if it admits a (necessarily 
unique) q.c. P' = Q such that (i)-(iv) hold. To P G p we associate a projective 

unit u =PeGA (u G (J) and a projective face F = K n im P* of £ (PG F). 
We write Fp = K O im P* and p / = F p , . Now P, U, F are i/i wtfi/ra/ 1-1 cor­

respondence. P G P is compatible with a E A if a = Pa + P'a; when a = Qe 

with Q G P, this will hold iff P, Q G P commute, then we say P, Ö are compat­

ible. Also we say P G P is bicompatible with A G ^ if P is compatible with a 
and with all Q G P compatible with a. An affine retraction p: £ —> Kf C AT is 
said to be transversal zt F C K' if p(y) = p(z) implies y - z G P. 

4M.S (MOS) subject classifications (1970). Primary 46A40, 46L05, 46L10, 47A60. 
Key words and phrases. C*-algebras, von Neumann algebras, state spaces, compact con­

vex sets, ordered linear spaces, simplexes, spectral theory, functional calculus, noncommuta-
tive. 

Copyright © 1975, American Mathematical Society 

893 


