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balanced, and a more widely appealing book, and it is a shame that the 
opportunity has been missed. 
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Monotone matrix functions and analytic continuation, by W. F. Donoghue, Jr., 
Springer-Verlag, New York, Heidelberg, Berlin, 1974, 182 pp., $19.70 

In a 1934 article Charles Loewner posed and solved the following problem: 
Characterize the class Pn{a, b) of real-valued functions on the interval (a, b) 
that are monotone matrix functions of order n. This means that whenever A, B 
are n-by-n Hermitian matrices with spectrum in (a, b) and A^B (i.e. A—B is 
positive definite), then f (A)^ / (B) . As usual, f (A) is defined as the Hermitian 
matrix whose eigenvectors are the same as those of A and whose eigenvalues 
are gotten from those of A by applying ƒ. Loewner showed that for n ^ 2 such 
a function is automatically continuously differentiable and, regarded as a 
function from the linear space of n-by-n Hermitian matrices to itself, its 
derivative at A=diag(Ai, • • •, An) sends the matrix (Xjk) to the matrix 
([A,, \k]fXjk), where 

[*, y]/ = 
'<'>-ƒ<*> i f » * y , 

x - y 

[f(x) ifx = y. 
So a necessary and sufficient condition for monotonicity of order n is the 
positive definiteness of the matrix [g, &]ƒ for every choice of £i, • • •, £n e 
(a, b). An equivalent condition is the positive definiteness of [£,, v\k]f for every 
a<£i<T| i<£ 2< • * * <r]n<b; in fact Loewner starts with proving the necessity 


