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Consider the Volterra integral equation 

(E) U(t) = - ƒ J A{t - T)g(u(j)) dr + ƒ (f), t > 0, 

on a Hilbert space H. A(t) is a family of bounded, linear, selfadjoint operators 

on H and g is a nonlinear bounded map from H into itself. If f(t) —• f0(t) 

as t —• °° then 

(E0) u0(t) = - ƒ " A(r)g(u0(t - T))dr + f0(t), t > 0, 

will be called a limit equation for (E). The following result appears in [7]. 

THEOREM (MILLER). Let H = Rn. Suppose A G Z,j(0, <*>),ƒ: R+ —• 
Rn is bounded and uniformly continuous, g is continuous. Let (E) have a 

bounded solution u on R*. Then there exist a solution u0 of(E0) and a se

quence tn —• °° such that u(t + tn) —• u0(f) as n —> «>. 

We give a result complementary to Miller's. We give conditions on A 
and g which guarantee that if (E0) has a bounded solution then all solutions 
of (E) tend to u0 as t —• °°. 

Our hypotheses are taken from [5]. We assume that g is continuous, 
bounded with g(Q) = 0 and that 

(1) (g(u) - g(v), u - v) > m \\u - v II2 for some m > 0. 

We assume that A G C ( 2 ) [0 , <*>), Aik) G I ^ O , «>), k = 0, 1, 2. A also is to 
satisfy 

(2) (A(0)u,u)>ct\\u\\2, <i(0)w, w><-/3llwll2, a > 0, 0 > 0, 

(2\ given any N, there exists d(N)> 0 such that 

<Re A *(iri)u, u)>b(N)\\u II2 for all \q\<N. 
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