BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 81, Number 4, July 1975

LIMITS OF SOLUTIONS OF VOLTERRA INTEGRAL EQUATIONS¹

BY R. C. MAC CAMY AND R. L. SMITH

Communicated by Richard Goldberg, January 14, 1975

Consider the Volterra integral equation

(E)
$$u(t) = -\int_0^t A(t-\tau)g(u(\tau)) d\tau + f(t), \quad t > 0,$$

on a Hilbert space *H*. A(t) is a family of bounded, linear, selfadjoint operators on *H* and *g* is a nonlinear bounded map from *H* into itself. If $f(t) \rightarrow f_0(t)$ as $t \rightarrow \infty$ then

(E₀)
$$u_0(t) = -\int_0^\infty A(\tau)g(u_0(t-\tau))d\tau + f_0(t), \quad t > 0,$$

will be called a *limit* equation for (E). The following result appears in [7].

THEOREM (MILLER). Let $H = R^n$. Suppose $A \in L_1(0, \infty)$, $f: R^+ \to R^n$ is bounded and uniformly continuous, g is continuous. Let (E) have a bounded solution u on R^+ . Then there exist a solution u_0 of (E₀) and a sequence $t_n \to \infty$ such that $u(t + t_n) \to u_0(t)$ as $n \to \infty$.

We give a result complementary to Miller's. We give conditions on A and g which guarantee that if (E_0) has a bounded solution then all solutions of (E) tend to u_0 as $t \to \infty$.

Our hypotheses are taken from [5]. We assume that g is continuous, bounded with g(0) = 0 and that

(1)
$$\langle g(u) - g(v), u - v \rangle \ge m ||u - v||^2$$
 for some $m > 0$.

We assume that $A \in C^{(2)}[0, \infty)$, $A^{(k)} \in L_1(0, \infty)$, k = 0, 1, 2. A also is to satisfy

(2)
$$\langle A(0)u, u \rangle \ge \alpha \|u\|^2$$
, $\langle \dot{A}(0)u, u \rangle \le -\beta \|u\|^2$, $\alpha > 0$, $\beta > 0$,

(3) given any N, there exists $\delta(N) > 0$ such that $\langle \operatorname{Re} A^{(i\eta)u}, u \rangle \ge \delta(N) ||u||^2$ for all $|\eta| \le N$.

AMS (MOS) subject classifications (1970). Primary 45D05, 45G99. ¹This work was supported by the National Science Foundation.

Copyright © 1975, American Mathematical Society