THE LOOP SPACE PROBLEM AND ITS CONSEQUENCES

BY JAMES P. LIN
Communicated March 14, 1975

0. Introduction. One of the key results in the study of the topology of Lie groups is the following theorem of Bott [2]:

Theorem. Let G be a simply connected Lie group. Then $H_{*}(\Omega G ; Z)$ is torsion free.

Bott subsequently coauthored a paper with Samelson [3] which uses this theorem to obtain extensive information about the homotopy and homology of Lie groups. Later, Araki [1] used this result to compute the $\bmod p$ cohomology of the exceptional groups E_{7} and E_{8} over the Steenrod algebra. Bott's proof depends heavily on the existence of a differential structure on the Lie group.

Shortly after Bott proved this result, it was conjectured that the integral homology of the loops on a finite simply connected H-space should be torsion free. We resolve this conjecture for odd primes:

Theorem 1. Let X be a simply connected finite H-space. Then $H_{*}(\Omega X ; Z)$ has no odd torsion.

Actually, we prove this result in a much more general setting. Unlike Bott's proof, which relies heavily on the differential structure, our proof is purely homological and can be applied to H-spaces that do not even have the homotopy type of a finite complex.

I wish to thank Bill Browder, John Harper, Richard Kane, J. C. Moore and Alex Zabrodsky for many helpful discussions. I am especially indebted to Richard Kane for pointing out the theorems about the sparseness of the even generators in the mod p cohomology ring of an H-space.

1. Statement of results. For the remainder of the paper, X will be a two-connected H-space having the homotopy type of a CW complex with finitely many cells in each dimension. Furthermore, p will be an odd prime, and we will assume $Q H^{\text {even }}\left(X ; Z_{p}\right)$ is finite dimensional and $\beta_{1} Q H^{\text {even }}\left(X ; Z_{p}\right)=0$.

[^0] dary $57 \mathrm{F05}, 57 \mathrm{~F} 10,55 \mathrm{~J} 20$.

[^0]: AMS (MOS) subject classifications (1970). Primary 57F25, 55D45, 55G20; Secon-

