[^0]
BULLETIN OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 81, Number 4, July 1975

G-TRANSVERSALITY

BY TED PETRIE
Communicated by Barbara Osofsky, February 4, 1975

Let G be a compact Lie group and N, M and $Y \subset M$ be smooth G manifolds. Suppose $f: N \rightarrow M$ is a proper G map. We give an obstruction theory (Theorem 1) for a proper G homotopy between f and a map g transverse to Y written $f \pitchfork Y$. In this generality we cannot say more; however, when $f: N$ $\rightarrow M$ is a quasi-equivalence of G vector bundles over Y, this can be considerably improved (Theorem 2) by removing the dependence of the map f. By definition f is a quasi-equivalence if N and M are G vector bundles over Y and f is proper, fiber preserving and degree 1 on fibers. To be concise we suppose G is abelian and omit applications and insights, referring to [1] and [2] for further information.

Let K be a subgroup of G and \hat{K} the set of real irreducible K modules. If Γ and Ω are real K modules, let $V_{\Gamma, \Omega}$ denote the space of surjective real K homomorphisms of Γ to Ω. By Schur's lemma $V_{\Gamma, \Omega}=\Pi_{\psi \in \hat{K}} V_{\Gamma, \Omega}^{\psi}$ where $V_{\Gamma, \Omega}^{\Psi}$ has the homotopy type of the Stiefel manifold of b_{ψ} frames in the D_{ψ} vector space of dimension a_{ψ}. Here D_{ψ} is the division algebra of real K endomorphisms of ψ and $\Gamma=\Sigma_{\psi \in \hat{K}} a_{\psi} \psi, \Omega=\Sigma_{\psi \in \hat{K}} b_{\psi} \psi$.

[^0]: 11. H. Matsumura, Commutative algebra, Benjamin, New York, 1970. MR 42 \#1813.
 12. S. McAdam, Going down and open extensions, Canad. J. Math. (to appear).
 13. I. J. Papick, Ph. D. Dissertation, Rutgers University, New Brunswick, N. J., 1975.
 14. M. Raynaud, Anneaux locaux henséliens, Lecture Notes in Math., vol. 169, Springer-Verlag, Berlin and New York, 1970. MR 43 \#3252.
 15. F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799. MR 31 \#5880.

 DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903

