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1. Introduction. This note announces some results which build upon the 
studies of Dobbs [3], [4] and Dobbs and Papick [5] on going-down exten
sions and going-down domains. Whereas much of [4] was motivated by flat
ness (cf. [ I l , 5.D], [15]), the present work has a topological stimulus (cf. [7], 
[8, Proposition 1.10.13(a), (b ' )] , [10, pp. 145-160], [12], [14, Corollaire 2, 
p. 42] ). We introduce and study new topologically defined classes of going-
down domains, by considering how various going-down conditions on a domain 
R and its overrings relate to conditions on the topological space Spec(#). 

Details, as well as a systematic study of the behavior of various classes of 
going-down domains under homomorphic images, localization and globalization, 
integral change of rings, and the "D 4- M construction", will appear elsewhere. 

2. Notation. Let P (respectively, Q) be a property which may be satis
fied by an extension of (commutative integral) domains (respectively, by the 
map induced on prime spectra by an extension of domains). A domain R is a 
? domain (respectively, (^domain) if R C Irrespectively, Spec(r) —• 
Spec(/?)) satisfies P(respectively, Q) for each overring T of R. 

3. Going-down domains and /-domains. In this section, we introduce 

tools needed for the remaining sections, and at the same time extend and 

clarify notions already present in the literature. Recall from [4] and [5] that 

a domain R is called agoing-down domain (written R is GD) in case we take 

P = GD; and R is said to be treed if Spec(Z?), a s a partially ordered set under 

inclusion, is a tree. In [4], it is shown that a GD domain must be treed; an 

example of Lewis, described in [13], shows that the converse need not be true. 

By taking P = mated (as defined by Dawson and Dobbs [2] ) and Q = injec-
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