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1. Introduction. In this paper we announce results concerning exten
sions of ergodic actions of locally compact groups. Our results about exten
sions, together with related results and applications, enable us to obtain a 
measure theoretic analogue of Furstenberg's work in topological dynamics, to 
extend several well-known aspects of ergodic theory, and to present a unified 
view of these various phenomena. The author wishes to thank Professor 
G. W. Mackey for many helpful suggestions and conversations. 

2. Generalization of the von Neumann-Halmos-Mackey theory. By an 
ergodic G-space, where G is a locally compact second countable group, we 
mean a Lebesgue space (X, M) together with a Borel action of G on X, under 
which JJL is invariant and ergodic. (X, JU) is called an extension of the ergodic 
G-space (Y, v) if there is a Borel G-map p: X —> Y with /?*(ju) = *>• By de
composing [i with respect to v over the fibers of p, L2(X) becomes a Borel 
G-Hilbert bundle over Y [8]. In the study of a single G-space X, an impor
tant role is played by the decomposition of the representation of G on L2(X) 
defined by translation. For the study of extensions, the decomposition of 
L2(X) into G-invariant subbundles over Y plays an analogous role. Theo
rems A, B, and C are the generalization to extensions of the classical "discrete 
spectrum" theory of von Neumann and Halmos [4], [9], as generalized, in 
part, by Mackey [5]. The classical results and Mackey's generalization are 
included in these theorems as the special case in which Y is one point. 

DEFINITION. X has relatively discrete spectrum over Y if L2(X) is the 
direct sum of finite dimensional G-invariant subbundles over Y. X has rela
tively elementary spectrum over Y if each of these subbundles can be taken 
to be one dimensional. 

DEFINITION. If Y is an ergodic G-space and K a compact group, a Borel 
map c: Y x G —• K is called a homomorphism, or cocycle, if for each g, 
h EG, c(y, hg) = c(y, h)c(yh, g) for almost all y EY. 
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