WHEN IS A MANIFOLD A LEAF OF SOME FOLIATION?

BY JONATHAN D. SONDOW¹

Communicated by Glen E. Bredon, February 4, 1975

Given a connected smooth open manifold L, does there exist a compact manifold M and a C' codimension q foliation of M with a leaf diffeomorphic to L? Here $1 \le r \le \infty$. Most of our results are for q = 1, but note that if the answer is yes for q then it is yes for any q' > q. Theorem 1 gives four conditions on L any one of which is sufficient, and the Corollary provides interesting examples where L is a surface. We have found no necessary condition in general, but Theorem 2 gives a strong necessary condition on the ends of L in order that L be a codimension one leaf each of whose ends has only one asymptote. Details and proofs will appear elsewhere.

THEOREM 1. L is diffeomorphic to a leaf of a C^r codimension q foliation of some compact manifold if any one of the following conditions is satisfied (q = 1 except possibly in condition 1.4).

1.1. L is diffeomorphic to the interior of a compact manifold-withboundary ($r = \infty$ and L will be a proper leaf).

1.2. $L = L_1 \# L_2$ where L_1 and L_2 are proper leaves of C^r codimension one foliations of compact orientable manifolds.

1.3. $L = L_1 - X$ where L_1 is a leaf of a C^r codimension one foliation of a compact manifold with a closed transversal which intersects L_1 in X.

1.4. L is a regular covering space of a compact manifold with covering group which has a C^r action on a connected compact q-manifold with a free orbit. (If the orbit is discrete, the leaf L will be proper.)

Recall (see e.g. [2]) that an end ϵ of a connected manifold is determined by a sequence $U_1 \supset U_2 \supset \ldots$ of unbounded components of the complements of compact sets such that $\bigcap_{i=1}^{\infty} \overline{U}_i = \emptyset$. Another such sequence $V_1 \supset V_2 \supset \ldots$ determines the same end if every U_i contains some V_j . Each U_i is called a *neighborhood* of ϵ . Define ϵ to be *boundable* if it has a closed neighborhood of the form $B \times [0, \infty)$ where B is a connected compact manifold.

Copyright © 1975, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 57D15.

¹ This work partially supported by NSF grant GP29265.