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Consider the differential equations 

(1) yW+p(t)y = 0 

and 

(2) yW-p(t)y = 0, 

where p is positive and continuous on [0, °°), and suppose that, for some 
a > 0 and some integer k E [1, n - 1] either of these equations has at least 
one nontrivial solution y for which 

yia) =y\a) = ••• = / * - % ) =/*>(c) 

= / * + 0 ( c ) = . . . = y < « - i ) ( c ) , c>a. 

The point Vk,n-k(a) ~ ^ c> where c ranges over all values for which such 
solutions exist, is called the "(k, n - fc)-focal point of 0" (the fact that 
Vkfn-k(a) > a i s elementary). The point 77(0) = mmkrikn_k(a) is referred to 
as "the focal point of a". It is known that equation (1) can only have focal 
points i\kfn-k(a) for which n - k is an odd number, while in the case of 
equation (2) n - k must be even [4]. For the study of focal points we may 
therefore replace (1) and (2) by the single equation 

(3) y(n) - (- \y-kpy = 0. 

In the oscillation theory of equations of the form (1) or (2), focal points 

play a role very similar to that of the more commonly used conjugate points 

[1] . In particular, it can be shown that the nonexistence of a focal point 

rfa) G (0, 00) is equivalent to the disconjugacy of the equation on [a, °°). 

Our principal result characterizes the focal points of an equation in terms 

of continuity properties of the solutions of an associated nonlinear differential 

system. 
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