SOME SINGULAR PERTURBATION PROBLEMS

BY F. A. HOWES¹

Communicated by Hans Weinberger, December 27, 1974

1. Introduction. The singularly perturbed boundary value problem

(1.1)
$$\epsilon y'' = f(t, y, y', \epsilon), \quad 0 < t < 1,$$

$$(1.2) y(0, \epsilon) = A, y(1, \epsilon) = B,$$

for ϵ a small positive parameter, has been studied extensively under various linearity restrictions. See, for example, [3] and [4], and the references therein. However, two principal assumptions have been that the corresponding reduced problem

(1.3)
$$0 = f(t, u, u', 0), \quad 0 < t < 1,$$
$$u(1) = B,$$

has a solution u = u(t) of class $C^{(2)}[0, 1]$ and that in a suitable tube around u, $f_{y'} = \partial f/\partial y' \leq -k$, for some positive constant k. This latter assumption excludes the occurrence of turning points and makes the function u a stable root of (1.3).

Under additional assumptions, by means of several asymptotic methods, the existence of a solution $y = y(t, \epsilon)$ of (1.1), (1.2), for each ϵ sufficiently small, can be deduced and this solution can be shown to satisfy an estimate of the form

$$y(t, \epsilon) = u(t) + \mathcal{O}(|A - u(0)| \exp[-kt\epsilon^{-1}]) + \mathcal{O}(\epsilon), \quad 0 \le t \le 1.$$

Here 0 denotes the standard Landau order symbol. The exponential term $v(t, \epsilon) = \exp[-kt\epsilon^{-1}]$ is a boundary layer function, in that $v(0, \epsilon) = 1$ and $v(t, \epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0^+$ for t > 0.

2. Statement of the problem and main result. Consider the more general boundary value problem

(2.1)
$$a(t, \epsilon) y'' = f(t, y, y', \epsilon), \quad 0 < t < 1,$$

AMS (MOS) subject classifications (1970). Primary 34E15; Secondary 34B15.

¹Supported by the National Science Foundation under Grant no. NSF-GP-37069X.