SOME SINGULAR PERTURBATION PROBLEMS

BY F. A. HOWES ${ }^{1}$
Communicated by Hans Weinberger, December 27, 1974

1. Introduction. The singularly perturbed boundary value problem

$$
\begin{equation*}
\epsilon y^{\prime \prime}=f\left(t, y, y^{\prime}, \epsilon\right), \quad 0<t<1 \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
y(0, \epsilon)=A, \quad y(1, \epsilon)=B \tag{1.2}
\end{equation*}
$$

for $\boldsymbol{\epsilon}$ a small positive parameter, has been studied extensively under various linearity restrictions. See, for example, [3] and [4], and the references therein. However, two principal assumptions have been that the corresponding reduced problem

$$
\begin{gather*}
0=f\left(t, u, u^{\prime}, 0\right), \quad 0<t<1 \\
u(1)=B \tag{1.3}
\end{gather*}
$$

has a solution $u=u(t)$ of class $C^{(2)}[0,1]$ and that in a suitable tube around $u, f_{y^{\prime}}=\partial f / \partial y^{\prime} \leqslant-k$, for some positive constant k. This latter assumption excludes the occurrence of turning points and makes the function u a stable root of (1.3).

Under additional assumptions, by means of several asymptotic methods, the existence of a solution $y=y(t, \epsilon)$ of (1.1), (1.2), for each ϵ sufficiently small, can be deduced and this solution can be shown to satisfy an estimate of the form

$$
y(t, \epsilon)=u(t)+O\left(|A-u(0)| \exp \left[-k t \epsilon^{-1}\right]\right)+O(\epsilon), \quad 0 \leqslant t \leqslant 1
$$

Here O denotes the standard Landau order symbol. The exponential term $v(t, \epsilon)=\exp \left[-k t \epsilon^{-1}\right]$ is a boundary layer function, in that $v(0, \epsilon)=1$ and $v(t, \epsilon) \longrightarrow 0$ as $\epsilon \longrightarrow 0^{+}$for $t>0$.
2. Statement of the problem and main result. Consider the more general boundary value problem

$$
\begin{equation*}
a(t, \epsilon) y^{\prime \prime}=f\left(t, y, y^{\prime}, \epsilon\right), \quad 0<t<1 \tag{2.1}
\end{equation*}
$$

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 34E15; Secondary 34B15.
 ${ }^{1}$ Supported by the National Science Foundation under Grant no. NSF-GP-37069X.

