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1. Introduction. The singularly perturbed boundary value problem 

(1.1) ey"=f(t9y9y'9e), 0 < f < l , 

(1.2) y(P,e)=A, y(l,e) = B9 

for e a small positive parameter, has been studied extensively under various 
linearity restrictions. See, for example, [3] and [4] , and the references there­
in. However, two principal assumptions have been that the corresponding 
reduced problem 

0 = / ( f , u, w',0), 0 < f < l , 
(1.3) 

K(l)=tf, 

has a solution u = u(t) of class C^[09 1] and that in a suitable tube around 
u, f ' = df/dy' < - k, for some positive constant k. This latter assumption 
excludes the occurrence of turning points and makes the function u a stable 
root of (1.3). 

Under additional assumptions, by means of several asymptotic methods, 
the existence of a solution y = y(t, e) of (1.1), (1.2), for each e sufficiently 
small, can be deduced and this solution can be shown to satisfy an estimate 
of the form 

y(t, e) = i*(f) + 0(\A - u ( 0 ) | e x p [ - t o € - 1 ] ) + 0(e), 0 < f < l. 

Here 0 denotes the standard Landau order symbol. The exponential term 
v(t, e) = exp [— kte~x] is a boundary layer function, in that u(0, e) = 1 and 
v(t, e) —* 0 as e —> 0 + for t > 0. 

2. Statement of the problem and main result. Consider the more 

general boundary value problem 

(2.1) a(t9 e)y" = ƒ(*, y9 y\ e), 0 < t < 1, 
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