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1. Introduction. In two works, one in 1930 [5, p. 38] and the other 
in 1931 [6], H. Hasse produced one of the major theorems of class field 
theory, namely, his norm theorem which states that if k is a cyclic extension 
of the number field k' then an element of k' is the norm of an element of k 
if and only if it is the norm of an element everywhere locally. Also in 1931 
[6, p. 68], Hasse showed that for the fields k' = Q (the rationals) and k = 
QCVU, Ve?), his norm theorem did not hold, and hence his theorem, unlike 
all other major results of class field theory, is not true for arbitrary abelian 
extensions. In the 1967 publications [1, p. 360] from the Brighton Confer-
ference, J. Tate and J.-P. Serre presented k = Ô(VTJ, VÎT) as another ex
ample where the Hasse norm theorem does not hold. In 1971 Y. Furuta pro
duced an equation [4, p. 321] which, were it not for an annoying factor in 
the denominator, would show when the Hasse norm theorem held for k/Q in 
terms of the central class number and the genus number of k. See also a very 
interesting result of 0. Taussky-Todd [7, Theorem 5]. It is only natural to 
ask the following question. For which noncyclic extensions of the rationals 
Q does the Hasse norm theorem hold? The aim of this note is to present 
theorems which give a computable answer to this question for a certain class 
of noncyclic extensions of Q. Detailed proofs of the theorems will appear 
elsewhere. 

2. A new characterization of the Hasse norm theorem. Let k be a finite 
abelian extension of Q. 

Let p be a prime divisor in Q. Let 0 E g* = Q\{0}. Let (r~) be the 
Hasse norm residue symbol. Let N be the norm map from k to Q. By abuse 
of language we will take the statement "the Hasse norm theorem holds for k" 
to mean that for each j3 € Q* there exists j§ G k such that N$ = J3 if and only 
if ^~) = 1 for all prime divisors p of Q. 

Let K' be the "narrow" genus field of k, i.e. the maximal abelian ex-
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