8. MR 39 \#7947.
9. W. F. Lucas, The proof that a game may not have a solution, Trans. Amer. Math Soc. 137 (1969), 219-229. MR 38 \#5474.
10. J. von Neumann and O. Morgenstern, Theory of games and economic behavior, Princeton Univ. Press, Princeton, N.J., 1944. MR 6, 235.
11. R. Selten, Valuation of n-person games, Advances in Game Theory, Princeton, N.J., 1964, pp. 577-626. MR 29 \#1081.
12. L. S. Shapley, $\boldsymbol{A}$ value for n-person games, Contributions to the Theory of Games, vol. 2, Princeton Univ. Press, Princeton, N.J., 1953, pp. 307-317. MR 14, 779.
13. -_, A solution containing an arbitrary closed component, Contributions to the Theory of Games, vol. 4, Princeton Univ. Press, Princeton, N.J., 1959, pp. 87-94. MR 22 \#635.
14. _, Values of large market games: Status of the problem, RM-3957-PR, The Rand Corporation, Santa Monica, 1964.

Convolution equations and projection methods for their solution, by I. C. Gohberg and I. A. Fel'dman, American Mathematical Society Translations, vol. 41, 1974, ix +261 pp .

Suppose $\mathfrak{B}_{1}$ and $\mathfrak{B}_{2}$ are Banach spaces, $\left\{P_{r}\right\}$ and $\left\{Q_{\tau}\right\}$ are families of projection operators on $\mathfrak{B}_{1}$ and $\mathfrak{B}_{2}$ respectively which converge strongly as $\tau \rightarrow \infty$ to the respective identity operators, and $A$ is a bounded linear transformation from $\mathfrak{B}_{1}$ to $\mathfrak{B}_{2}$. One says that the projection method ( $P_{r}, Q_{\tau}$ ) is applicable to $A$ if, roughly speaking, $\left(Q_{\tau} A P_{\tau}\right)^{-1}$ converges strongly to $A^{-1}$ as $\tau \rightarrow \infty$. More precisely what is required is that $Q_{\tau} A P_{r}$, as an operator from $P_{\tau} \mathfrak{B}_{1}$ to $Q_{\tau} \mathfrak{B}_{2}$, be invertible for sufficiently large $\tau$ and that $\left(Q_{\tau} A P_{\tau}\right)^{-1} Q_{\tau}$ converge strongly as $\tau \rightarrow \infty$. (Then $A$ is necessarily invertible and the strong limit is $A^{-1}$.)

To give an example, the prototype of those considered in this book, let $a$ be a bounded function defined on the unit circle having Fourier coefficients $a_{k}(k=0, \pm 1, \cdots)$, and consider the operator $A$ on $l_{2}$ of the positive integers defined by

$$
A\left\{\xi_{j}\right\}=\left\{\sum_{k=1}^{\infty} a_{j-k} \xi_{k}\right\}_{j=1}^{\infty}
$$

This is the (semi-infinite) Toeplitz operator associated with $a$. The projections are the simplest ones: $P_{n}=Q_{n}=$ projection on the subspace of sequences $\left\{\xi_{j}\right\}$ satisfying $\xi_{j}=0$ for $j>n$. The operator $P_{n} A P_{n}$ may then be represented by the finite Toeplitz matrix

$$
A_{n}=\left(a_{j-k}\right)_{j, k=1}^{n}
$$

and the question is whether these matrices are invertible from some $n$ onward and, if so, whether the inverses of these matrices converge strongly

