Errata (Communicated by the author)

Should read

p. 32 line $3 \quad R$-rank G
p. 49 line 4
p. 69 line 3
$\stackrel{\geqq}{\Gamma} \backslash$
p. 134 line 10
$\boldsymbol{S p}(1, n) / \boldsymbol{S p}(1) \times \boldsymbol{S p}(n)$
p. 136 line -7
projective space P_{K}^{n} as cyclic K-subspaces of K^{n+1}, represent them as hermitian projections onto cyclic K-subspaces of K^{n+1} with respect to
p. 142 line 2
H_{K}^{n}
p. 187 line $5 \quad \cdots \theta$ extends to a unique analytic isomorphism...
p. 187 line $6 \quad \cdots$ from Theorem 18.1, Corollary 23.6, and Lemma 8.6.

Sigurdur Helgason

Complete normed algebras, by F. F. Bonsall and J. Duncan, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York, Heidelberg, Berlin 1973, x+301 pp. $\$ 26.20$

It was in 1939 that I. M. Gelfand [10] announced the results of his pioneering investigations of Normed Rings, thereby launching a new field of mathematical research which continues 35 years later in a state of vigorous development. For Gelfand, a normed ring was in fact a complete normed algebra; i.e., an algebra for which the underlying vector space is a (usually complex) Banach space and multiplication is continuous with respect to the given Banach space norm. Continuity of multiplication is usually provided by imposing the multiplicative inequality, $\|x y\| \leqq$ $\|x\|\|y\|$, on the norm. For obvious reasons, these algebras have come to be known as "Banach algebras", a term which is now rather firmly established in the literature. ${ }^{1}$ Such algebras were in fact studied earlier by M. Nagumo [18] and K. Yosida [26] who called them "metric rings". Also, as might be expected, some of the concepts arising in the earlier study of operators on a Banach space, as well as the study of certain

[^0]
[^0]: ${ }^{1}$ The authors remark (p. 4) that they would have preferred the term "Gelfand algebra'" for a complete normed algebra. Although the reviewer had much to do with establishing the term "Banach algebra"' and has a strong preference for terminology that suggests the nature of the indicated object, he agrees that "Gelfand algebra" would have been a most appropriate choice. Since this book will no doubt be widely accepted, the authors, given the courage of their convictions, probably could have effected the change.

