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In this note we announce some new results concerning the spectral the-
ory of measures as convolution operators. To state our principal theorem, we
introduce the following notation. If X is a Banach space and T is a bounded
linear operator on X, we write sp(7, X) to denote the spectrum of T on X.
Let G be an LCA group with dual group I'. M(G) will denote the class of
finite regular Borel measures on G, and My(G) = {u € M(G) | & vanishes at
infinity on I'}. For u € M(G), let T,, denote the operator defined by 7,(f)
= u #* f, that is, convolutions with u. Finally, let ! be the natural domain
of the Hilbert transform on L,(R), and let Lip o denote the usual class of
bounded functions on R satisfying a Lipschitz condition of order a, 0 < &
< 1. We can now state our main result.

THEOREM 1. There exists a measure u € My(R) such that
(a) sp(T,,H") # iR) U {0}, and
() sp(T,, Lip @) # 4(R) U {0}, 0 <a < 1.

This may be viewed as an analogue of the now classical Wiener-Pitt the-
orem concerning the invertibility of Fourier-Stieltjes transforms [4, Theorem
5.3.4]. Moreover, an elementary interpolation argument shows that if 1 <
p<e,

sp(T,. L,) = 5®) U {0},
for all v € M (R) (see [1, §1.4]). Thus, in a sense, our theorem is inter-

mediate between the L, and Lp (1 < p < =) cases.
The proof of Theorem 1 is based on the following result.

THEOREM 2. Let
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