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In this note we announce some new results concerning the spectral the
ory of measures as convolution operators. To state our principal theorem, we 
introduce the following notation. If X is a Banach space and T is a bounded 
linear operator on X, we write sp(T, X) to denote the spectrum of T on X. 

Let G be an LCA group with dual group I\ M(G) will denote the class of 
finite regular Borel measures on G, and M0(G) = {jit E M(G)\pL vanishes at 
infinity on T}. For JU GM(G), let T^ denote the operator defined by T^(f) 

= JU * ƒ, that is, convolutions with fji. Finally, let H1 be the natural domain 
of the Hubert transform on /^(R), and let Lip a denote the usual class of 
bounded functions on R satisfying a Lipschitz condition of order a, 0 < a 
< 1. We can now state our main result. 

THEOREM 1. There exists a measure fi G M0(R) such that 
(a) sp ( r j U , ^ 1 )^ i Q(R)U {0}, and 

(b) sp(TM, Lip a) * M(R) U {0}, 0 < a < 1. 

This may be viewed as an analogue of the now classical Wiener-Pitt the
orem concerning the invertibility of Fourier-Stieltjes transforms [4, Theorem 
5.3.4]. Moreover, an elementary interpolation argument shows that if 1 < 

sp (7 ; ,Z p ) = ?(R)U {0}, 

for all v G I 0 ( R ) (see [1, §1.4]). Thus, in a sense, our theorem is inter
mediate between the Lx and L (1 < p < °°) cases. 

The proof of Theorem 1 is based on the following result. 

THEOREM 2. Let 
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