MULTIPLIERS OF CLOSED IDEALS OF $L^{p}(D^{\infty})$

BY DANIEL M. OBERLIN

Communicated by Richard Goldberg, November 14, 1974

Let G be a compact abelian group with character group X. Let E be a subset of X and for $1 \le p \le \infty$, let L_E^p be the ideal of E-spectral functions in $L^p(G)$. Let M_E^p be the space of complex-valued functions on E which multiply $\widehat{L_E^p}$ into itself, and let $M^p \mid_E$ be the set of restrictions to E of functions in M_X^p . We are interested in the following questions:

(i) Does $M_E^p = M^p |_E$?

(ii) Does an analogue of the Riesz-Thorin interpolation theorem hold for the spaces L_E^p ? I.e., for $1 \le p_1 \le p_2 \le \infty$, are the interpolation spaces obtained by applying Calderón's complex method of interpolation to $L_E^{p_1}$ and $L_E^{p_2}$ actually the intermediate L_E^p spaces?

(iii) For $1 \le p < q < 2$ or $2 < q < p \le \infty$, is $M_E^p \subseteq M_E^q$?

Question (i) is posed for the circle group T in [3, pp. 280-281] and has an affirmative answer for any G if p = 2 (trivially) or if $p = \infty$ (see [2, Theorem 3.3], [8], and, for a more general result, [6]). Question (ii) is inspired by [1, p. 344, Remarque], while (iii) seems natural in view of (i) and (ii).

(An affirmative answer for either (i) or (ii) clearly implies the same for (iii).) We take for our group G the Cantor group D^{∞} (= Z(2)^N) and we prove the following:

THEOREM 1. There exists a subset E of X such that:

(a) for each $p \in [1, 2)$, there is a multiplier of $\widehat{L_E^p}$ into $\widehat{L_E^2}$ which is not in $M^p|_E$;

(b) the interpolation spaces B_t obtained by applying the complex method of interpolation to L_E^1 and L_E^2 are not the spaces L_E^p (p = p(t) = 2/(2-t), 0 < t < 1).

THEOREM 2. For $p = 4, 6, ..., there exists a subset <math>E_p \subseteq X$ such that $M_{E_p}^p \supseteq M^p |_{E_p}$.

Copyright © 1975, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 42A18; Secondary 43A75.