BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 81, Number 2, March 1975

A RESTRICTION THEOREM FOR THE FOURIER TRANSFORM

BY PETER A. TOMAS

Communicated by Harry Kesten, October 24, 1974

Let f be a Schwartz function on \mathbb{R}^n , and let $\hat{f}(\theta)$ denote the restriction of the Fourier transform of f to the unit sphere S^{n-1} in \mathbb{R}^n . We prove

THEOREM. If f is in $L^p(\mathbb{R}^n)$ for some p with $1 \le p < 2(n+1)/(n+3)$, then

$$\int_{S^{n-1}} |\hat{f}(\theta)|^2 \, d\theta \leq c_p \|f\|_p^2.$$

Proof.

$$\int |\widehat{f}(\theta)|^2 d\theta = \int f * \widetilde{f}(x) \widehat{d\theta}(x) dx = \int f(x) \widehat{d\theta} * f(x) dx \le ||f||_p ||\widehat{d\theta} * f||_{p'}$$

for conjugate indices p and p'. Thus it suffices to prove that the operator given by convolution with $\widehat{d\theta}$ is bounded from L^p to $L^{p'}$ for p in the appropriate range. Let K(x) be a radial Schwartz function with K(x) = 1 for $|x| \le 100$, and let $T_k(x) = [K(x/2^k) - K(x/2^{k-1})] \ \widehat{d\theta}(x)$. It suffices to show there exists $\epsilon = \epsilon(p) > 0$ such that $||T_k * f||_{p'} \le C2^{-\epsilon k} ||f||_p$. This follows from interpolating the estimates $||T_k * f||_{\infty} \le C2^{-(n-1)k/2} ||f||_1$ and $||T_k * f||_2 \le 2^k ||f||_2$.

Professor E. M. Stein has extended the range of this result to include p = 2(n + 1)/(n + 3). His proof uses complex interpolation of the operators given by convolution with the functions $B_{\sigma}(x) = J_{\sigma}(2\pi|x|)/|x|^{\sigma}$. Then $\widehat{d\theta}(x) = B_{(n-2)/2}(x)$.

A great deal was previously known about such restriction theorems. E. M. Stein originally established the theorem for $1 \le p < 4n/(3n + 1)$. For n = 2, this was extended by Fefferman and Stein [2] to the range $1 \le p < 6/5$. P. Sjolin (see [1]) proved the theorem for n = 3 and $1 \le p \le 4/3$. Finally, A. Zygmund [3] determined for two dimensions all p and q such that the Fourier transform of an L^p function restricts to $L^q(S^1)$. Since a

AMS (MOS) subject classifications (1970). Primary 42A68, 42A92; Secondary 42A18.