BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 81, Number 2, March 1975

ON THE R-FORMS OF CERTAIN ALGEBRAIC VARIETIES

BY STEPHEN KUDLA

Communicated by Dock Rim, October 14, 1974

In this note we determine explicitly the inequivalent models over **R** of certain varieties $U = \Gamma \setminus H^n$ where Γ is a unit group of a totally indefinite quaternion algebra over a totally real number field k, $|k: \mathbf{Q}| = n$, and H = upper half-plane. For each model defined over **R** we give a formula for the number of connected components of the manifold of real points of U.

1. Let A be a totally indefinite division quaternion algebra over a totally real number field k, \mathfrak{G} a maximal order in A, and $\Gamma = \{\gamma \in \mathfrak{G}^{\times} \text{ with reduced} norm <math>\nu(\gamma) = 1\}$. We fix an isomorphism λ : $A_{\mathbf{R}} = A \otimes_{\mathbf{Q}} \mathbf{R} \cong M_2(\mathbf{R})^n$, $n = lk : \mathbf{Q}|$; then $\lambda(\Gamma \otimes 1) \subset \mathrm{SL}_2(\mathbf{R})^n$ and thus $\Gamma/\pm 1$ acts properly discontinuously on H^n = product of n copies of the upper half-plane via fractional linear transformations. Under certain assumptions on A, $\Gamma/\pm 1$ will act without fixed points so that $U = \Gamma \setminus H^n$ will be a compact complex manifold. It is well known that such U are imbeddable as nonsingular complex projective algebraic varieties.

A real model of U is a pair (U', φ) consisting of a nonsingular projective variety $U' \subset \mathbf{P}^N(\mathbf{C})$ defined over \mathbf{R} and a biholomorphic map $\varphi: U \to U'$. Two real models are equivalent if there exists a biregular isomorphism f: $U'_1 \to U'_2$ with f defined over \mathbf{R} . An equivalence class of real models will be called an \mathbf{R} -form of U. To each real model (U', φ) of U we associate an antiholomorphic involution $\rho: U \to U$ by the formula $\rho(x) = \varphi^{-1}(\overline{\varphi(x)})$. We call the points $x \in U$ such that $x = \rho(x)$ the real points of the model (U', φ) . The following is well known:

LEMMA 1. The **R**-forms of U are in one-to-one correspondence with the $\operatorname{Aut}^{h}(U)$ conjugacy classes of antiholomorphic involutions on U. Here $\operatorname{Aut}^{h}(U) = biholomorphic automorphisms of U.$

AMS (MOS) subject classifications (1970). Primary 14G05; Secondary 12A60, 22E40. Key words and phrases. Real algebraic variety, arithmetic of quaternion algebra, outer automorphisms, antiholomorphic involution.

Copyright © 1975, American Mathematical Society