A 4-MANIFOLD WHICH ADMITS NO SPINE

by yukio matsumoto ${ }^{1}$
Communicated by Edgar Brown, Jr., October 26, 1974

1. This note is to present a new example which reveals the impossibility of embedding a 2 -torus in a 4 -manifold.

Theorem 1. There exists a compact 4-dimensional PL manifold W^{4} with boundary satisfying the following conditions: (i) W^{4} is homotopically equivalent to the 2-torus $T^{2}=S^{1} \times S^{1}$, and (ii) no homotopy equivalence $T^{2} \longrightarrow W^{4}$ is homotopic to a PL embedding.

By a PL embedding is meant one which is not necessarily locally flat.
Theorem 1 is an application of the codimension two surgery theory developed in our previous papers [4], [5], [6]. The phenomena of "total spinelessness" in higher dimensions (with finite π_{1} 's) were found by Cappell and Shaneson [2] using another method of surgery ${ }^{2}$ [1].

A calculation in our proof leads to another consequence concerned with submanifolds in codimension two. Let $K^{4 n}$ denote a product $\mathrm{CP}_{2} \times \cdots \times$ $\mathbf{C} P_{2}$ of n-copies of the complex projective plane $\mathbf{C} P_{2}$.

Theorem 2. For each $n \geqslant 0$, there exists a locally flat embedding $h_{(4 n)}$ of $K^{4 n} \times S^{1}$ into the interior of $K^{4 n} \times D^{2} \times S^{1}$, which is homotopic to the zero cross section $K^{4 n} \times\{0\} \times S^{1}$, but is not locally flatly concordant to a splitted embedding.

A splitted embedding (with respect to a point $*$ of S^{1}) means a locally flat embedding $f: K^{4 n} \times S^{1} \longrightarrow K^{4 n} \times D^{2} \times S^{1}$ such that (i) f is transverse regular to $K^{4 n} \times D^{2} \times\{*\}$ so that the intersection $M^{4 n}=f\left(K^{4 n} \times S^{1}\right) \cap$ $K^{4 n} \times D^{2} \times\{*\}$ is a closed manifold, and (ii) the inclusion $M^{4 n} \rightarrow K^{4 n} \times$ $D^{2} \times\{*\}$ is a homotopy equivalence.

Theorem 2 contrasts with Farrell and Hsiang's result [3] which may be

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 55C45, 57C65, 18F25;
 Secondary 55A25, 55C35.
 ${ }^{1}$ The author is partially supported by the Fūjukai Foundation.
 ${ }^{2}$ Their theory (with Γ-groups) and ours (with P-groups) are not the same but both admit a more general unifying algebraic treatment [7].

 Copyright © 1975, American Mathematical Society

