BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 81, Number 2, March 1975

A 4-MANIFOLD WHICH ADMITS NO SPINE

BY YUKIO MATSUMOTO 1

Communicated by Edgar Brown, Jr., October 26, 1974

1. This note is to present a new example which reveals the impossibility of embedding a 2-torus in a 4-manifold.

THEOREM 1. There exists a compact 4-dimensional PL manifold W^4 with boundary satisfying the following conditions: (i) W^4 is homotopically equivalent to the 2-torus $T^2 = S^1 \times S^1$, and (ii) no homotopy equivalence $T^2 \rightarrow W^4$ is homotopic to a PL embedding.

By a PL embedding is meant one which is not necessarily locally flat.

Theorem 1 is an application of the codimension two surgery theory developed in our previous papers [4], [5], [6]. The phenomena of "total spinelessness" in higher dimensions (with finite π_1 's) were found by Cappell and Shaneson [2] using another method of surgery² [1].

A calculation in our proof leads to another consequence concerned with submanifolds in codimension two. Let K^{4n} denote a product $CP_2 \times \cdots \times$ CP_2 of *n*-copies of the complex projective plane CP_2 .

THEOREM 2. For each $n \ge 0$, there exists a locally flat embedding $h_{(4n)}$ of $K^{4n} \times S^1$ into the interior of $K^{4n} \times D^2 \times S^1$, which is homotopic to the zero cross section $K^{4n} \times \{0\} \times S^1$, but is not locally flatly concordant to a splitted embedding.

A splitted embedding (with respect to a point * of S^1) means a locally flat embedding $f: K^{4n} \times S^1 \longrightarrow K^{4n} \times D^2 \times S^1$ such that (i) f is transverse regular to $K^{4n} \times D^2 \times \{*\}$ so that the intersection $M^{4n} = f(K^{4n} \times S^1) \cap$ $K^{4n} \times D^2 \times \{*\}$ is a closed manifold, and (ii) the inclusion $M^{4n} \longrightarrow K^{4n} \times K^{4n}$ $D^2 \times \{*\}$ is a homotopy equivalence.

Theorem 2 contrasts with Farrell and Hsiang's result [3] which may be

AMS (MOS) subject classifications (1970). Primary 55C45, 57C65, 18F25; Secondary 55A25, 55C35.

¹The author is partially supported by the Fujukai Foundation.

²Their theory (with Γ -groups) and ours (with *P*-groups) are not the same but both admit a more general unifying algebraic treatment [7]. Copyright © 1975, American Mathematical Society