SEMICONTINUITY OF KODAIRA DIMENSION

BY D. LIEBERMAN¹ AND E. SERENESI

Communicated by Edgar Brown, Jr., January 10, 1975

Let X be a compact analytic space (or a complete algebraic variety) and let L be a line bundle on X and denote by $f_i \colon X \longrightarrow \mathbf{P}^N$ the rational map defined by the global sections of $L^{\bigotimes i}$. The L-dimension of X, K(X, L) is defined by

$$K(X, L) = \overline{\lim_{i \to \infty}} (\dim(f_i(X))$$

with the convention $K(X, L) = -\infty$ if $L^{\bigotimes i}$ has no nontrivial sections for all i > 0. In the particular case when X is nonsingular and $L = \Omega$ is the canonical bundle, the invariant $K(X) = K(X, \Omega)$ is called the canonical (or Kodaira) dimension of X and is the fundamental invariant in the classification of surfaces. Recent works by Ueno [4] and Iitaka [1], [2] have studied K(X, L) for higher dimensional varieties. A fundamental open question is the behavior of K(X, L) under deformations of (X, L). When X is a smooth surface the plurigenera (and hence the Kodaira dimension) are deformation invariant [1], and Iitaka has constructed a family of threefolds X_t with $K(X_0) = 0$ and $K(X_t) = -\infty$, $t \neq 0$.

Our main result is

THEOREM. Given X_0 a compact analytic space (or complete algebraic variety) and L_0 a line bundle on X_0 satisfying

- (1) $L_0^{\bigotimes i}$ is spanned by its global sections for some i > 0,
- (2) $K(X_0, L_0) = \dim(X_0)$, and (X_t, L_t) is any (flat) deformation of (X_0, L_0) , then $K(X_t, L_t) = K(X_0, L_0)$.

When X_0 is a smooth surface and $L_0 = \Omega_0$ it was shown by Mumford [3] that hypothesis (1) on L_0 is implied by (2). For general L_0 hypothesis

AMS (MOS) subject classifications (1970). Primary 14D15, 32G05.

Key words and phrases. Kodaira dimension, semicontinuity, deformation.

¹Sloan Foundation Fellow, partially supported by NSF GP-28323A3.