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Let X be a compact analytic space (or a complete algebraic variety) and 
let L be a line bundle on X and denote by ft : X —• P ^ the rational map de
fined by the global sections of L®'. The L-dimension of X, K(X> L) is de
fined by 

K(X, L) = I ta(d im( ƒ,(*)) 
I-»oo 

with the convention K(X, L) = - °° if L has no nontrivial sections for all 

i" > 0. In the particular case when X is nonsingular and L = ^ is the canoni

cal bundle, the invariant K(X) = K(X, £2) is called the canonical (or Kodaira) 

dimension of X and is the fundamental invariant in the classification of sur

faces. Recent works by Ueno [4] and Iitaka [1], [2] have studied K(X, L) 

for higher dimensional varieties. A fundamental open question is the behavior 

of K(X, L) under deformations of (X, L). When X is a smooth surface the 

plurigenera (and hence the Kodaira dimension) are deformation invariant [1], 

and Iitaka has constructed a family of threefolds Xt with K(X0) = 0 and 

K(Xt) = - ~ t* 0. 

Our main result is 

THEOREM. Given X0 a compact analytic space (or complete algebraic 

variety) and L0a line bundle on X0 satisfying 

(1) L®1 is spanned by its global sections for some i > 0, 

(2) K(X0, L0) = dim(X0), 
and (Xt, Lt) is any (flat) deformation of(X0, L0), then K(Xt, Lt) = 

K(X0i L0). 

When X0 is a smooth surface and L0 = ^ 0 it was shown by Mumford 
[3] that hypothesis (1) on L0 is implied by (2). For general L0 hypothesis 
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