REAL FORMS OF HERMITIAN SYMMETRIC SPACES¹

BY HARRIS A. JAFFEE

Communicated by Dock Rim, September 30, 1974

Introduction. The results we give here only begin to answer the following general problems: Let X be a hermitian symmetric domain, Γ a group acting holomorphically and discontinuously, and $U = \Gamma \setminus X$ the quotient. Then, by Kodaira if U is compact and smooth, or, by Baily-Borel if just U has finite volume (and Γ arithmetic), U is algebraic. One can ask for all ways of algebracizing U over **R**, for each of the number of connected components of $U(\mathbf{R})$, and the type of each component as, say, a real analytic space. For the smooth **R**-algebraic varieties $U = \Gamma \setminus X$, each component of $U(\mathbf{R})$ is a quotient of the form $U' = \Gamma' \setminus X'$ of a globally symmetric space $X' \subset X$ by a subgroup $\Gamma' \subset \Gamma$. To determine which X' and Γ' -actions occur is our goal.

Generalities. Let X be as above, $\sigma: X \to X$ an antiholomorphic involution, and X' the set of fixed points of σ . (We consider Γ only virtually now.)

PROPOSITION. (a) σ is an isometry of the Bergmann metric.

(b) X' is a nonempty connected totally geodesic subsymmetric space of X; dim_R $X' = \dim_{C} X$.

(c) X' is holomorphically dense: a holomorphic or antiholomorphic automorphism of X is determined by its restriction to X'.

One can construct, at least for X without "exceptional" factors, (for example via the Lie algebra of the isometry group) involutions as above. Choose σ_0 as "standard" and x_0 a fixed point of σ_0 . Let G^h be the group of holomorphic automorphisms of X, K^h the isotropy group at x_0 . Then Gal = $\{1, \sigma_0\}$ acts by conjugation on G^h and K^h . Moreover if C denotes the set of all antiholomorphic involutions of X, and C_0 the subset fixing x_0 , then G^h acts by conjugation on C and K^h preserves C_0 . The quotients C/G^h and C_0/K^h are the G^h - and K^h -conjugacy classes of C and C_0 . These can be

AMS (MOS) subject classifications (1970). Primary 32M15, 53C35; Secondary 22E40. Key words and phrases. Hermitian symmetric domain, antiholomorphic involution.

¹ Partial results of the author's dissertation under M. Kuga at SUNY at Stony Brook.