A UNIQUENESS THEOREM FOR HOMOLOGY IN Cat, THE CATEGORY OF SMALL CATEGORIES

BY DANA MAY LATCH

Communicated by S. Eilenberg, November 27, 1974

I. Introduction. Oberst [7], Laudal [4], Watts [10], and André [1] have shown that derived functors of colimit define a homology theory for Cat, the category of small categories. In this note, we outline a proof of uniqueness for such a homology theory, making extensive use of a Kan-type construction (see e.g. Lemma A) and of uniqueness for homology in $S^{\Delta op}$, the category of simplicial sets [2].

II. Preliminaries. The following Kan-type construction is used in several contexts.

LEMMA A. Let C be a cocomplete category, C a small category, and θ : $C \rightarrow C$ a functor. Then there exists an adjoint pair: the singular functor S_{θ} : C $\rightarrow S^{C^{op}}$ defined by $S_{\theta}(A) = C(\theta_{-}, A)$, for $A \in |C|$, and its left adjoint $\hat{\theta}$: $S^{C^{op}}$ $\rightarrow C$.

Let Δ be the small category whose objects are the finite ordinals $[k] = \{0 < 1 < 2 < ... < k\}$ and whose morphisms are order preserving functions μ : $[k] \rightarrow [m]$. By considering the full inclusion functor ι : $\Delta \rightarrow$ Cat, in the context of Lemma A, nerve, N: Cat $\rightarrow S^{\Delta^{\text{op}}}$, is the singular adjoint of categorical realization c: $S^{\Delta^{\text{op}}} \rightarrow$ Cat and $cN = \text{id}_{\text{Cat}}$ [3, p. 33]. Thus the standard representable k-dimensional simplicial set $\Delta[k]$ is actually $N([k]) = \Delta(-, [k])$.

Similarly, the functor $\tau: \Delta \to C$ at defined as the comma category, $\tau[k] = \Delta \downarrow [k]$, gives rise to another pair of adjoint functors S: Cat $\to S^{\Delta^{\text{op}}}$ and Γ : $S^{\Delta^{\text{op}}} \to C$ at. Let $X \in |S^{\Delta^{\text{op}}}|$, then ΓX is the small category whose objects are $\prod_{k \ge 0} X_k$, and whose morphisms are triples $\langle y, \mu, x \rangle$ where $x \in X_m$ is the codomain, $\mu: [k] \to [m]$ in Δ is the morphism, and $y = X(\mu)x$ in X_k is the domain.

The natural transformation "last", $\eta: \tau \rightarrow \iota$, is given by $\eta_k(\alpha: [p] \rightarrow [k]) = \alpha(p) \in [k]$. By adjoint functor theory and by the theory of coends, η induces natural transformations $\eta^1: N \rightarrow S$, $\eta^2: \Gamma \rightarrow c$, $\eta^3: \Gamma N \rightarrow cNx = \mathrm{id}_{Cat}$, and $\eta^4: N\Gamma \rightarrow \mathrm{id}_{S\Delta^{OP}}$.

AMS (MOS) subject classifications (1970). Primary 55B40; Secondary 18G30, 18G10. Key words and phrases. Homology theory, category of small categories, simplicial sets, left derived functors of colimit.