THE DETERMINANT OF A RANDOM MATRIX
 BY F. ALBERTO GRÜNBAUM
 Communicated by Hans Weinberger, October 17, 1974

An experimental worker measures $n \times n$ independent magnitudes $a_{i j}$ ($i, j=1, \cdots, n$) and computes the determinant of the corresponding matrix before discarding the $a_{i j}$'s. One can imagine a set-up where he only gets to know the determinant but not the $a_{i j}$ themselves. By repeating the same experiment over and over and averaging the corresponding determinants he obtains the determinant of the unknown mean values $m_{i j}$ of the magnitudes $a_{i j}$.

The purpose of this note is to indicate that under reasonable assumptions he can get much more information about the unknown matrix $m_{i j}$ at no extra cost.

Assume that the entries $a_{i j}(i, j=1, \cdots, n)$ are jointly Gaussian variables with unknown means $m_{i j}$ and known correlation matrix R.

For the remainder of this note we concentrate on the special case where the entries are independent and have the same variance, i.e. $R=\rho I(\rho \neq 0)$; this case already well illustrates our point. The results given here illustrate the fact that in many nonlinear identification problems the presence of noise can prove helpful (see [1]). We give first a complete analysis of the 2×2 case.

For the discussion below put

$$
M(x)=\left(\begin{array}{ll}
a+x_{1} & b+x_{2} \\
c+x_{3} & d+x_{4}
\end{array}\right)
$$

with a, b, c, d unknown constants, and $x_{1}, x_{2}, x_{3}, x_{4}$ Gaussian $(0,1)$ random variables. The case $(0, \rho)(\rho \neq 0)$, is just the same.

Bring in the characteristic function of the determinant $F(\lambda)=E e^{i \lambda \operatorname{det} M}$ and conclude after some elementary computation that

$$
F(\lambda)=e^{i \lambda M(0)} \Psi(a+d,-\lambda) \Psi(d-a, \lambda) \Psi(b+c,-\lambda) \Psi(b-c, \lambda)
$$

Here

