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Let A = {Xfc}SJT=1 be a sequence of distinct nonnegative real numbers. 
It is well known that the exponential sums 

0 ) «,(*) = Z **«**'• akeR9s=l,2,---, 
k-l 

are dense in C[A, B], - °° < A < B < + «>, if and only if Müntz' condition 
Xx ^0 l/XA. = +°° holds. In this note Jackson-type results on the rate of 
convergence of the exponential sums (1) are given. Substituting 

(2) x = et~B, te[A,B], xE [a,l], 

where a = eA ~B
 9 we are led to the problem where the functions ƒ E C[a, 1], 

0 < a < 1, are to be approximated on [a, 1] by the A-polynomials 

(3) P,(*)= £ bkx
X\ bkER, s = l , 2 , - - - . 

fc=i 

Recently, many optimal or almost optimal Jackson-Müntz theorems on the 
approximation properties of the A-polynomials (3) for the interval [0, 1] have 
been published (cf. J. Bak and D. J. Newman [1] and M. v. Golitschek [2]). 
Considering intervals [a, 1], a > 0, one would expect that the A-polynomials 
have even better approximation properties than on [0, 1], as the "singular" 
point* = 0 might have less influence. Theorems 1 and 2 prove this conjecture. 

THEOREM 1. Let 0 < a < 1, M > 0. If A satisfies 

(4) 0<\k<Mk for all k= 1,2,---, 

then for each function fECr[a9 1], r > 0, and each integer s> r + 1 there 
exists a ^polynomial ps such that for all a <x < 1 
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