THE PRODUCTS OF MANIFOLDS WITH THE f.p.p. NEED NOT HAVE THE f.p.p.

BY S. Y. HUSSEINI¹

Communicated by Glen Bredon, October 24, 1974

In [1] Bredon showed that the complex $X_{\alpha} = S^k \cup_{\alpha} D^{2m}$ has the fixed-point property with $[\alpha] \in \pi_{2m-1}(S^k)$ being nontrivial, provided that the following condition holds.

CONDITION (*). k is odd, and r=2m-k-1 < k-1. But $X_{\alpha} \times X_{\alpha}$ admits a fixed-point free map if p, the order of $[\alpha]$, is relatively prime to p', the order of $[\alpha']$. To show that the analogous situation holds for manifolds, let M_{2m} be a 2n-dimensional compact smooth manifold, with 2m < n and $\pi_1(\partial M_{2m}) = \{1\}$, of the same homotopy type as X_{α} , and put $M = M_{2m} \cup_h M_{2m}$ where $h: \partial M_{2m} \longrightarrow \partial M_{2m}$ is a diffeomorphism.

THEOREM 1. Suppose in addition to Condition (*) that r is not of the form $2^s - 2$, and that p, the order of $[\alpha]$ in $\pi_{2m-1}(S^k)$ is greater than 2 if $r = 0 \mod 8$. Then the connected sum $M \# CP^n$, of M and the complex n-projective space CP^n , has the fixed-point property if n + 1 is relatively prime to both p and $\varphi(p)$ where $\varphi(p)$ is the Euler function of p.

To prove the theorem one shows that the Lefschetz number L(f) of any map $f: M \# CP^n \longrightarrow M \# CP^n$ is given by the equation

$$L(f) = -(\kappa + \kappa') + (\mu + \mu') + (1 + \lambda + \cdots + \lambda^n)$$

where κ , κ' , μ , μ' and λ are integers such that

$$\kappa \kappa' = \lambda^n = \mu \mu', \quad \kappa = \mu \mod q \text{ and } \kappa' = \mu' \mod q$$

with q being a proper divisor of p. In fact q is the order of the class of $[\alpha]$ in $\Pi_r(S)$ /image J, where $\Pi_r(S)$ is the stable r-stem $\pi_{r+*}(S^*)$ and J the stable J-homomorphism $\pi_r(SO) \longrightarrow \Pi_r(S)$, and the conditions on r are required to ensure that q > 1 and that the congruence $\kappa' = \mu' \mod q$ holds.

AMS(MOS) subject classifications (1970). Primary 55C20, 57D99.

¹While working on this paper the author was partially supported by the National Science Foundation, Grant No. GP-29538-A4.