MANIFOLDS WITH PREASSIGNED CURVATUREA SURVEY

BY HERMAN GLUCK ${ }^{1}$

In this paper I discuss two problems of Riemannian geometry in the large concerning the existence of manifolds with preassigned curvature.

The Minkowski problem and its generalization asks in Euclidean space for a closed convex hypersurface whose curvature has been given in advance. The converse to the Gauss-Bonnet theorem asks for the existence, on a two-dimensional manifold, of a Riemannian metric with prescribed Gaussian curvature. The questions have a meeting point: the search for two-spheres in three-space with given strictly positive curvature.

While the first problem goes back to the work of Minkowski [32] in 1897, the second is of more recent vintage: it was posed explicitly by Warner in the early 1960's. Both have been solved in the last few years, and in this survey I try to give an overview and some of the details.

The paper is organized into the following sections:

1. The Minkowski problem
2. The generalized Minkowski problem
3. Converse to the Gauss-Bonnet theorem for smooth manifolds
4. Converse to the Gauss-Bonnet theorem for PL manifolds
5. Realization in three-space
6. The Minkowski problem.
(1.1) Curvature of Convex Hypersurfaces. Let M^{n} be a smooth closed convex hypersurface in Euclidean space R^{n+1}. The Gauss map $\gamma: M^{n} \rightarrow S^{n}$ associates with each point $x \in M$ the unit outward normal vector to M at x. Given a region A on M, the ratio

$$
\frac{\text { area of } \gamma(A) \text { on } S^{n}}{\text { area of } A \text { on } M^{n}}
$$

represents the average curvature of M throughout the region A, and its

[^0]
[^0]: Invited address delivered at the Annual Meeting of the American Mathematical Society in Missoula, Montana, August 1973; received July 2, 1974.

 AMS (MOS) subject classifications (1970). Primary 53-02, 53C20, 53 C 45.
 Key words and phrases. Riemannian metric, Riemannian manifold, curvature, Gaussian curvature, Gauss-Bonnet theorem, Minkowski problem.
 ${ }^{1}$ The author thanks the National Science Foundation for its financial support.

