ALGEBRAS OF ANALYTIC FUNCTIONS ON DEGENERATING RIEMANN SURFACES

BY RICHARD ROCHBERG ${ }^{1}$
Communicated by Richard Goldberg, September 30, 1974

I. Introduction. By a Riemann surface we mean a finite bordered Riemann surface. For a Riemann surface S denoted by $A(S)$ the supremum normed Banach algebra of functions continuous on S and analytic on the interior of S. For any two Banach spaces A and B define $d(A, B)=$ $\log \inf \left\{\|T\|\left\|T^{-1}\right\| ; T\right.$ a continuous invertible linear map of A onto $\left.B\right\}$. For S_{1} and S_{2} homeomorphic Riemann surfaces define $d\left(S_{1}, S_{2}\right)=$ $d\left(A\left(S_{1}\right), A\left(S_{2}\right)\right)$. It is known [7] that d defines a metric on $R\left(S_{1}\right)$, the Riemann space of S_{1}, the space of conformal equivalence classes of Riemann surfaces homeomorphic to S_{1}, and that the topology induced by this metric is the same as that induced by the Teichmuller metric. The metric space ($R\left(S_{1}\right), d$) is not complete. In this note we present properties of the ideal elements that are introduced in forming the completion of the metric space $\left(R\left(S_{1}\right), d\right)$. Proofs of these and related results will appear in a later publication.

The main result is that the new elements are connected degenerate Riemann surfaces. In fact, the results presented strongly suggest (but do not prove) that the completion of $\left(R\left(S_{1}\right), d\right)$ is formed by adjoining to $R\left(S_{1}\right)$ exactly those elements obtained by "pinching to a point" of closed noncontractible curves on surfaces in $R\left(S_{1}\right)$.

On an informal geometric level these results are related to results on degeneration of compact surfaces [4] and results on boundary points of Teichmüller space [1], [2], [5].
II. An example. The following example illustrates many of the phenomena described in Theorem 2. For $0<r<1$ let $S_{r}=\{r \leqslant|z| \leqslant 1\}$. Let $A_{r}=A\left(S_{r}\right)$. Let S_{0} be two closed disks with their centers identified, and let A_{0} be the algebra of continuous functions on S_{0} which are "analytic" on the interior.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 30A98, 46J15, 32G15.
 ${ }^{1}$ This research supported in part by NSF grant GP 34628.

