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Introduction. In this note we announce sufficient conditions for an 
algebra to be a subalgebra of C°°(M) for some smooth manifold-without-
boundary M. In fact, we are able to determine when M is compact and, 
more generally, when M carries a Riemannian structure. We maintain the 
notation and terminology used in [5] and [7]. In addition, rry will denote 
the unique maximal ideal in the stalk Ap. We assume throughout this note 
that A is a geometrically homogeneous, harmonic, strongly semisimple, 
R-algebra with identity. We also assume that A is strongly regular and note 
that, as a consequence, / is a continuous real-valued function on r(A), for 
each ƒ G A [1] . For the sake of brevity, we call an algebra satisfying the 
above conditions smooth. 

Results. If mp is an Ap-module of finite type, then we set n • 
6imA(Mp) equal to the minimal number of generators required for mp. 

DEFINITION 1. If there exists a positive integer k such that for each 
Mp E($(4), n - dimA(Mp) = k, then we say that A has finite naive dimen
sion k, expressed by n • dim(A) = k. 

If o€H°(U, A), then by [o](p) we mean [o(p)] E mp/ml9 where 
pea 

DEFINITION 2. A is said to be locally framed if for each Mp E ($04) 
there exists a local unit ep at Mp, a relatively compact open neighborhood 
U of p with p G D C u(ep) C T(A)9 and sections ox, • • • , ok E 
H°(T(A)9 A) such that the family 

([ol - djfeVjJfa), • • • , K - ok(q)ep](q)) 

spans mq/rr$9 where q G D and k = n • dim04). The sections a j ^ , • • • , 
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