SOME SUBALGEBRAS OF $L^{\infty}(T)$ DETERMINED BY THEIR MAXIMAL IDEAL SPACES

BY T. WEIGHT

Communicated by Paul R. Halmos, June 18, 1974

1. Introduction. Sarason [4], [5] has shown, by using the notions of asymptotic multiplicity and vanishing mean oscillation, that $H^{\infty}(T) + C$ is determined by its maximal ideal space. In this note we announce a generalization of this result to include various superalgebras of $H^{\infty}(T) + C$. As intermediate steps, we develop localized notions of asymptotic multiplicity and VMO.

2. Definitions and notation. (a) Let

$$G_{n,\lambda} = \{z: 1 - 1/n < |z| < 1, |\arg z - \arg \lambda| < 1/n\}$$

for $\lambda \in T$, $n = 1, 2, \dots$. For a closed subalgebra A of $L^{\infty}(T)$ containing $H^{\infty}(T)$, the Poisson integral is said to be asymptotically multiplicative on A at λ if, for $f, g \in A, \epsilon > 0$, there exists an N such that $|\hat{f}(z)\hat{g}(z) - \hat{fg}(z)| < \epsilon$ for $z \in G_{n,\lambda}$ for all $n \ge N$.

(b) Now let I be an arc on T; we define θ_I and r_I such that

- (i) $e^{i\theta_I}$ is the center of *I*, and
- (ii) $r_I = 1 \pi m(I)$.

Now we define a collection of arcs $J_{n,\lambda} = \{\text{subarcs } I \text{ of } T: r_I e^{i\theta_I} \in G_{n,\lambda}\},\$ and for $f \in L^1(T)$ we define

$$M_{n,\lambda}(f) = \sup_{I \in J_{n,\lambda}} \frac{1}{m(I)} \int_{I} |f - f_{I}| dm.$$

We say that $f \in \text{VMO}_{\lambda}$ if $f \in \text{BMO}$ and $\lim_{n \to \infty} M_{n,\lambda}(f) = 0$. See [4] for a definition and discussion of BMO.

(c) Let $E \subseteq T$; then $L_E^{\infty}(T)$ will denote the set of functions in $L^{\infty}(T)$ which can be extended continuously on the set E. When E is a singleton, say $E = \{\lambda\}, L_E^{\infty}(T)$ will be denoted $L_{\lambda}^{\infty}(T)$. In case E is σ -compact, it is known [2] that $H^{\infty}(T) + L_E^{\infty}(T)$ is a closed algebra.

AMS (MOS) subject classifications (1970). Primary 46J10, 30A76, 30A78.

Copyright © 1975, American Mathematical Society