## UNIFORMLY TRIVIAL MAPS INTO SPHERES

## BY ALLAN CALDER

Communicated by S. Eilenberg, September 19, 1974

A map (continuous function) is uniformly trivial if it is uniformly homotopic to a constant map. The universal covering  $e: R \to S^1$  of the circle by the real line is an example of a map which is homotopically trivial but not uniformly so. For any space X a map  $f: X \to S^1$  is uniformly trivial if and only if there is a bounded map  $g: X \to R$  such that eg = f [E].

For spheres of higher dimension it has been shown that every map from euclidean n-space or (n + 1)-space to the n-sphere,  $S^n$ , is uniformly trivial [C1], [C2]. Here we announce the following extensions of these results.

THEOREM 1. For (X, A) a finite dimensional triangulable pair of spaces and n > 1, a map  $f: (X, A) \longrightarrow (S^n, *), * \in S^n$ , is uniformly trivial if and only if it is homotopically trivial.

THEOREM 2. For X a contractible finite dimensional triangulable space and Y a compact space, the fundamental group,  $\pi_1(Y)$ , of Y being finite implies that every map from X to Y is uniformly trivial, but there exists uniformly nontrivial maps from X to Y if X is noncompact and  $\pi_1(Y)$  contains an element of infinite order.

If (X, A) and (Y, B) are pairs of completely regular hausdorff spaces, the two maps  $f, g: (X, A) \rightarrow (Y, B)$  are uniformly homotopic if their extensions  $\beta f, \beta g: (\beta X, \beta A) \rightarrow (\beta Y, \beta B)$  are homotopic. Here  $\beta$  denotes the Stone-Čech compactification. For equivalent definitions see [D] and [ES].

OUTLINE OF PROOF OF THEOREM 1. For  $n \ge 1$  the free topological group F on  $S^n$  can be considered as a CW-complex of finite type (i.e. the m-skeleton  $F^m$  of F is compact for each m), and that there is an embedding,  $i: S^n \longrightarrow F$ , of  $S^n$  as a subcomplex of F, which represents a generator of  $\pi_n(F)$ . This is "folklore" but can easily be deduced from the proof of Theorem 1 in [H].

Let  $(E, p, S^{n+1})$  be the fiber bundle over  $S^{n+1}$  with fiber

AMS (MOS) subject classifications (1970). Primary 55D99; Secondary 54E60, 54D35.

Copyright © 1975, American Mathematical Society