AN ALGORITHM FOR THE TOPOLOGICAL DEGREE OF A MAPPING IN *n*-SPACE¹

BY FRANK STENGER

Communicated by Eugene Isaacson, October 3, 1974²

1. Introduction. In this paper we announce a new formula for computing the topological degree $d(F, P, \theta)$, where $F = (f^1, \dots, f^n)$ is a vector of real continuous functions mapping a polyhedron P in \mathbb{R}^n into \mathbb{R}^n , and θ is the zero vector in \mathbb{R}^n .

Let $A = [a_{ij}]$ be an $n \times n$ real matrix, and let A_i denote the *i*th row of A. We use the convenient notation $\Delta_n(A_1, \dots, A_n)$ for the determinant of A, and $|A_i| \equiv (a_{i1}^2 + \dots + a_{in}^2)^{\frac{1}{2}}$ for the Euclidean norm of A_i .

Let X_0, X_1, \dots, X_q denote q + 1 points in \mathbb{R}^n , where $q \leq n$, such that the vectors $X_i - X_0$, $i = 1, 2, \dots, q$, are linearly independent. A *q*-simplex with vertices at X_0, \dots, X_q is defined by

$$S_q(X_0, \cdots, X_q) \equiv \left\{ X \in \mathbb{R}^n \colon X = \sum_{i=0}^q \lambda_i X_i, \, \lambda_i \ge 0, \, \sum_{i=0}^n \lambda_i = 1 \right\}.$$

We denote by $[X_0 \cdots X_q]$ the oriented q-simplex, defined as in [2]. For example, if q = n, then $[X_0 \cdots X_q] = [X_0 \cdots X_n]$ is said to be positively (negatively) oriented in \mathbb{R}^n if $\Delta_{n+1}(Z_0, \cdots, Z_n) > 0$ (< 0), where $Z_i = (1, X_i)$.

Let P be a connected, *n*-dimensional closed polyhedron represented as a "sum" of m' positively oriented *n*-simplexes in the form

(1.1)
$$P = \sum_{j=1}^{m'} \left[X_0^{(j)} \cdots X_n^{(j)} \right]$$

such that the intersection of any two of the simplexes has zero n-dimensional volume.

AMS (MOS) subject classifications (1970). Primary 55C25; Secondary 55C20, 65H05, 65H10, 68A10.

Key words and phrases. Topological degree, algorithm, nonlinear equations.

Work supported by U. S. Army Research Grant #DAHC-04-G-017.

²Originally received July 2, 1974.