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This paper presents a lattice fixed-point theorem having applications in 
game theory and elsewhere. The results presented here form part of the 
author's Ph.D. thesis in Operations Research, conducted under the supervision 
of Robert Wilson. 

Let L be a complete lattice. Denote elements of L with small letters 
a, b, c, •••, and denote subsets of L with capital letters A, B, C •••. Con
sider a function U: L —• L with property P: for any ACL, U(\A) = 
/\U(A)9 where U(A)= {U(a)\aeA}.2 Denote the composition of U with 
itself by U2. 

Property P implies 

LEMMA 1. (1) a < b implies U(a) > U(b); (2)a<b implies U2{a) < 
U2(b). 

If we define LD(U) = {a^L\a< U(a)} and LD(U2) = {aGL\a< 
U2(a)}, then we have 

LEMMA 2. (1) U2 : LD{U) -+ LD(U); (2) U2 : LD(U2) - * LD(U2). 

LEMMA 3. LD(U2) is a complete join subsemilattice of L. 

We know from Tarski's theorem [1] that U2 has a fixed point in L, 
while it is not generally true that U has a fixed point. We can, however, 
state the following 

THEOREM . There exists an element s GL such that s = U2(s) and 

s < U(s). 
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