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We wish to point out how certain concepts in commutative algebra are 
of value in studying combinatorial properties of simplicial complexes. In par
ticular, we obtain new restrictions on the /-vectors of simplicial convex poly-
topes. 

Let A be a finite simplicial complex with vertex set V = {vl,v2, 
• ' # > vn}. We call the elements of A the faces of A. If the largest face 
of A has d elements, then we say dim A = d - 1. The f-vector of A 
is (fo> f\> # * * »/<*-i)> where dim A = d - 1 and exactly ft faces of A 
have i + 1 elements. Define for positive integers m9 

d-1 
H(A,m)=j: fifr-A 

Also define H(A, 0) = 1. We say that A is constructible [2] if it can 
be obtained by the following recursive procedure: (a) Every simplex is con
structible, and (b) if A and A' are constructible of the same dimension d, 
and if A n A' is constructible of dimension d - 1, then A U A' is con
structible. 

We know of two main classes of constructible A's: (A) The boundary 
complex of a simplicial convex polytope is constructible. This follows from 
[1]. (B) Let D be a finite distributive lattice, and let D' be D with the 
top element and bottom element removed. Let A be the simplicial complex 
whose faces are the chains of D'. Then A is constructible. 

If h and i are positive integers, then h can be written uniquely in 
the form 
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