HARMONIC FORMS AND RIESZ TRANSFORMS FOR RANK ONE SYMMETRIC SPACES

BY AROLDO KAPLAN¹ AND ROBERT PUTZ² Communicated by Hans Weinberger, June 11, 1974

We study harmonic forms on a noncompact rank one symmetric space M; that is, differential forms satisfying the equations $d\omega = 0$, $\delta\omega = 0$. We define "Hardy spaces" \mathbf{H}^p of harmonic forms on M and study their boundary behavior. Fractional and singular integral operators are introduced on an Iwasawa group \overline{N} of M, and used to characterize the boundary values of forms in \mathbf{H}^p , setting up an explicit isomorphism between these spaces and the ordinary L^p spaces on \overline{N} . In this sense, these operators play a similar role to that of the Riesz transforms on Euclidean spaces and compact Lie groups associated to the "conjugate systems" of harmonic functions studied by Coifman, Stein, and Weiss [1], [7].

1. Some vector fields on M. Let G be the identity connected component of the group of isometries of M; fix an Iwasawa decomposition G = KAN of G, and let $\overline{N} = \theta N$, where θ is the Cartan involution of G associated to K. Let $\mathfrak{g}, \mathfrak{k}, \mathfrak{n}, \overline{\mathfrak{n}}, \mathfrak{a}$ be the Lie algebras of the groups G, K, N, \overline{N}, A . Now define a right-action τ of the solvable group $\overline{S} = \overline{N}A$ on M = G/K as follows: since $G = \overline{S}K$, each $x \in M$ can be written uniquely as $x = s \cdot o$, where $o = \{K\}, s \in \overline{S}$; then for $s' \in \overline{S}$ let $\tau(s')(s \cdot o) = ss' \cdot o$. For $X \in \overline{\mathfrak{s}}$, considered as a left invariant vector field on \overline{S} , define a vector field \widetilde{X} on M by $\widetilde{X}_{\overline{n}a\circ o} = \tau_{\mathfrak{s}}(\operatorname{Ad}(a^{-1})X), \overline{n} \in \overline{N}, a \in A$, where $\tau_{\mathfrak{s}}$ denotes the infinitesimal action of $\overline{\mathfrak{s}}$ on M induced by τ . Since the action τ is free, $X \longrightarrow \widetilde{X}$ maps a basis of $\overline{\mathfrak{s}}$ onto an everywhere defined frame of vector fields on M. Moreover, $[X, Y]^{\sim} = [\widetilde{X}, \widetilde{Y}]$ whenever X and Y are both in \overline{n} and $[\widetilde{X}, \widetilde{Y}] = 0$ if $X \in \mathfrak{a}$. Note that the integral curves of $\widetilde{X}, X \in \mathfrak{a}$ are geodesics in M which are orthogonal to the family of submanifolds $\overline{Na} \cdot o, a \in A$.

AMS (MOS) subject classifications (1970). Primary 43A85, 53C35; Secondary 35H05.

Key words and phrases. Harmonic forms, Lie groups, fundamental solution, singular and fractional integrals.

¹Partially supported by NSF grant GP 29704 A3.

²Partially supported by NSF grant GP 28448.

Copyright © 1975, American Mathematical Society