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1. Introduction. Let G be a Lie group and LG its Lie algebra regard
ed as the space of differential operators of the first order which commute with the 
right translations. If Xx, • • • , Xn is a basis of LG, then the operator L = 
X\ + • • • + X* is called a laplacian on G. In [4] the commutative Banach 
•-subalgebra of L1(G) generated by the fundamental solution of the 
heat equation (b/dt - L)u = 0 was studied, and in case of compact extensions 
of nilpotent groups it proved to be useful in studying spectral properties of L 
on various LP(G) spaces, as well as in proving tauberian Wiener theorems con
cerning Gauss and Poisson integrals. In [6] and [9] a powerful method of 
singular integrals on the class of nilpotent Lie groups admitting one-parameter 
groups of dialations was developed. In [1] and [2] Folland and Stein studied 
the relation of these to certain subelliptic operators on the Heisenberg group. 
The idea is that in various important cases, although for a given one-parameter 
group of dialations {8S }, s > 0, of G there is no basis in LG such that 
8S*L = sxL where X is a scalar, there exists a set of generators Xl9 • • • , Xk 

of the Lie algebra LG such that 6s»Xj = sXj, j = 1, • • • , k. Let 

0 ) L=X\+---+Xl 

Then, of course, 

(2) 8 , . L = » a L 

The fact that Xx, • • • , Xk generate LG as a Lie algebra implies that L 
is a subelliptic operator. Using this fact we shall construct the Gauss and Pois
son kernels for the operator L, and via a study of the subalgebra of Ll(G) 
generated by these, we obtain the equality of the spectra of L on various 
LP(G) spaces as well as the corresponding tauberian Wiener theorems. More-
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